Return to search

A systems approach to model the conceptual design process of vertical take-off unmanned aerial vehicle.

The development and induction in-service of Unmanned Air Vehicles (UAV) systems in a variety of civil, paramilitary and military roles have proven valuable on high-risk missions. These UAVs based on fixed wing configuration concept have demonstrated their operational effectiveness in recent operations. New UAVs based on rotary wing configuration concept have received major attention worldwide, with major resources committed for its research and development. In this thesis, the design process of a rotary-wing aircraft was re-visualised from an unmanned perspective to address the requirements of rotary-wing UAVs - Vertical Take-off UAVs (VTUAV). It investigates the conventional helicopter design methodology for application in UAV design. It further develops a modified design process for VTUAV addressing the requirements of unmanned missions by providing remote command-and-control capabilities. The modified design methodology is automated to address the complex design evaluations and optimisation process. An illustration of the automated design process developed for VTUAVs is provided through a series of inputs of the requirements and specifications, resulting in an output of a proposed VTUAV design configuration for

Identiferoai:union.ndltd.org:ADTP/210059
Date January 2006
CreatorsRathore, Ankush, ankushrathore@yahoo.com
PublisherRMIT University. School of Aerospace, Mechanical and Manufacturing Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Ankush Rathore

Page generated in 0.002 seconds