Orientador: Ali Messaoudi / Banca: Eduardo Garibaldi / Banca: Sylvain Philippe Pierre Bonnot / Banca: Paulo Ricardo da Silva / Banca: Márcio Ricardo Alves Gouveia / Resumo: Neste trabalho, definimos a máquina de somar estocástica relacionada à base de Fibonacci e a uma sequência de probabilidades (Pi) i>1. Obtemos uma cadeia de Markov cujo estados são o conjunto dos inteiros não-negativos. Estudamos propriedades probabilísticas dessa cadeia, como transiência e recorrência. Mostramos também que o espectro associado a essa cadeia de Markov está relacionado ao conjunto de Julia fibrado de uma classe de endomorfismos em C 2. Além disso, estudamos propriedades dinâmicas e topológicas de uma classe de endomorfismos de C 2 (ou R 2). Precisamente, as aplicações consideradas são fn(x, y) = ( x y+ cn, x), onde cn E2 C (ou cn E R), para todo n>0 / Abstract: In this work we define a stochastic adding machine associated to the Fibonacci baseand to a probabilities sequence (Pi) i>1. We obtain a Markov chain whose states are the set of nonnegative integers. We study probabilistic properties of this chain, such as transience and recurrence. We also prove that the spectrum associated to this Markov chain is connected to the filled Julia sets for a class of endomorphisms in C 2. Furthermore, we study topological and dynamical properties of a class of endomorphisms of C 2 (or R 2). Precisely, the considered maps are fn(x, y) = (x y + cn, x), where cn 2 C (or cn E R), for all n>0 / Doutor
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000844070 |
Date | January 2015 |
Creators | Caprio, Danilo Antonio. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese, Portuguese, Texto em português; resumos em português e inglês |
Detected Language | Portuguese |
Type | text |
Format | 82 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0029 seconds