Here we developed multiple genetic systems through which genetic modifications driven by DNA breaks caused by the I-SceI nuclease can be assayed in the yeast Saccharomyces cerevisiae and in human cells. Using the delitto perfetto approach for site-directed mutagenesis in yeast, we generated isogenic strains in which we could directly compare the recombination potential of different I-SceI variants. By genetic engineering procedures, we generated constructs in human cells for testing the recombination activity of the same I-SceI variants. Both in yeast and human cells we performed gene correction experiments using oligonucleotides (oligos) following modification and/or optimization of existing gene targeting protocols and development of new ones. We demonstrated that an I-SceI nicking enzyme can stimulate recombination on the chromosome in S. cerevisiae at multiple genomic loci. We also demonstrated in yeast that an I-SceI-driven nick can activate recombination 10 kb distant from the initial site of the chromosomal lesion. Moreover we demonstrated that an I-SceI nick can stimulate recombination at the site of the nick at episomal and chromosomal loci in human cells. We showed that an I-SceI double-strand break (DSB) could trigger recombination up to 2 kb distant from the break at an episomal target locus in human cells, though the same was not observed for the nick. Overall, we demonstrated the capacity for I-SceI nick-induced recombination in yeast and human cells. Importantly, our findings reveal that the nick stimulates gene correction by oligos differently from a DSB lesion, as determined by genetic and molecular analyses in yeast and human cells. This research illustrates the promise of targeted gene correction following generation of a nick.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51721 |
Date | 02 April 2013 |
Creators | Stuckey, Samantha Anne |
Contributors | Storici, Francesca |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0019 seconds