A major focus is on integrated Silicon-based optoelectronics for the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive and portable optical sensors in the environmental control and medicine follows in the development of integrated high resolution sensors [1]. In particular, since 2013 the quick onsite verification of pathogens, like legionella in drinking water pipes, is becoming increasingly important [2, 3]. The essential questions regarding the establishment of portable biochemical sensors are the incorporation of electronic and optical devices as well as the implementations of fundamental cross-innovations between biotechnology and microelectronics.
This thesis describes the design, fabrication and analysis of high-refractive-index-contrast photonic structures. Besides silicon nitride (Si3N4) strip waveguides, lateral tapers, bended waveguides, two-dimensional photonic crystals (PhCs) the focus lies on monolithically integrated waveguide butt-coupled Silicon-based light emitting devices (Sibased LEDs) [4, 5] for use as bioanalytical sensor components. Firstly, the design and performance characteristics as single mode regime, confinement factor and propagation losses due to the geometry and operation wavelength (1550 nm, 541 nm) of single mode (SM), multi mode (MM) waveguides and bends are studied and simulated. As a result, SM operation is obtained for 1550 nm by limiting the waveguide cross-section to 0.5 μm x 1 μm resulting in modal confinement factors of 87 %. In contrast, for shorter wavelengths as 541 nm SM propagation is excluded if the core height is not further decreased.
Moreover, the obtained theoretical propagation losses for the lowestorder TE/TM mode are in the range of 0.3 - 1.3 dB/cm for an interface roughness of 1 nm. The lower silicon dioxide (SiO2) waveguide cladding should be at least 1 μm to avoid substrate radiations. These results are in a good correlation to the known values for common dielectric structures. In the case of bended waveguides, an idealized device with a radius of 10 μm was developed which shows a reflection minimum (S11 = - 22 dB) at 1550 nm resulting in almost perfect transmission of the signal. Additionally, tapered waveguides were investigated for an optimized light coupling between high-aspect-ratio devices. Here, adiabatic down-tapered waveguides were designed for the elimination of higher-order modes and perfect signal transmission. Secondly, fabrication lines including Electron-beam (E-beam) lithography and reactive ion etching (RIE) with an Aluminum (Al) mask were developed and lead to well fabricated optical devices in the (sub)micrometer range.
The usage of focused ion beam (FIB) milling is invented for smoother front faces which were analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). As a result, the anisotropy of the RIE process was increased, but the obtained surface roughness parameters are still too high (10 – 20 nm) demonstrating a more advanced lithography technique is needed for higher quality structures. Moreover, this study presents an alternative fabrication pathway for novel designed waveguides with free-edge overlapping endfaces for improving fiber-chipcoupling.
Thirdly, the main focus lies on the development of a monolithic integration circuit consisting of the Si-based LED coupled to an integrated waveguide. The light propagation between high-aspect-ratio devices is enabled through low-loss adiabatic tapers. This study shows, that the usage of CMOS-related fabrication technologies result in a monolithic manufacturing pathway for the successful implementation of fully integrated Si-based photonic circuits. Fourth, transmission loss measurements of the fabricated photonic structures as well as the waveguide butt-coupled Si-based LEDs were performed with a generated setup. As a result, free-edge overlapping MM waveguides show propagation loss coefficients of ~ 65 dB/cm in the range of the telecommunication wavelength. The high surface roughness parameters (~ 150 nm) and the modal dispersion in the core are one of the key driving factors. These facts clearly underline the improvement potential of the used fabrication processes.
However, electroluminescence (EL) measurements of waveguide butt-coupled Si-based LEDs due to the implanted rare earth (RE) ion (Tb3+, Er3+) and the host material (SiO2/SiNx) were carried out. The detected transmission spectra of the coupled Tb:SiO2 systems show a weak EL signal at the main transition line of the Tb3+-ion (538 nm). A second emission line was detected in the red region of the spectrum either corresponding to a further optical transition of Tb3+ or a Non Bridging Oxygen Hole Center (NBOHC) in SiO2. Unfortunately, no light emission in the infrared range was established for the Er3+-doped photonic circuits caused by the low external quantum efficiencies (EQE) of the Er3+ implanted Si-based LEDs.
Nevertheless, transmission measurements between 450 nm – 800 nm lead again to the result that an emission at 650 nm is either caused by an optical transition of the Er3+-ion or initialized by the NBOHC in the host. Overall, it is difficult to assess whether or not these EL signals are generated from the implanted ions, thus detailed statements about the coupling efficiency between the LED and the integrated waveguide are quite inadequate. Nevertheless, the principle of a fully monolithically integrated photonic circuit consisting of a Si-based LED and a waveguide has been successfully proven in this study.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-172306 |
Date | 28 July 2015 |
Creators | Germer, Susette |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Dr. habil. Lars Rebohle, Dr.-Ing. Wolfgang Skorupa, Prof. Dr. Johannes Heitmann, Prof. Dr. Manfred Helm |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0029 seconds