L'objet de cette thèse est l'étude, sur les variétés riemanniennes compactes $(V_n,g)$ de dimension $n>4$, de l'équation aux dérivées partielles elliptique de quatrième ordre $$(E)\; \Delta^2u+\nabla [a(x)\nabla u] +h(x)u= f(x)|u|^(N-2)u$$ où $a$, $h$, $f$ sont fonction $C^\infty $, avec $f(x)$ fonction constante ou partout positive et $N=(2n\over((n-4)))$ est l'exposant critique. En utilisant la méthode variationnelle on prouve dans le théorème principal que l'équation $(E)$ admet une solution $C^((5,\alpha))(V)$ $0<\alpha<1$ non nulle si une certaine condition qui dépend de la meilleure constante dans les inclusion de Sobolev ($H_2\subset L_(2n\over(n-4))$) est satisfaite. De plus on montre que si $a$ et $h$ sont des fonctions constantes bien précisées la solution de l'équation est positive et $C^\infty(V)$. Lorsque $n\geq 6$, on donne aussi des applications du théorème principal. Dans la dernière partie de cette thèse sur une variété riemannienne compacte à bord de dimension $n$, $(\overline(W)_n,g )$ nous nous intéressons au problème : $$ (P_N) \; \left\lbrace \begin(array)(c) \Delta^2 v+\nabla [a(x)\nabla u] +h(x) v= f(x)|v |^(N-2)v \; \hbox(sur)\; W \\ \Delta v =\delta \, , \, v = \eta \;\hbox(sur) \;\partial W \end(array)\right.$$ avec $\delta$,$\eta$,$f$ fonctions $C^\infty (\overline (W))$ avec $f(x)$ fonction partout positive et on démontre l'existence d'une solution non triviale pour le problème $(P_N)$.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00003179 |
Date | 23 April 2003 |
Creators | CARAFFA BERNARD, Daniela |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0126 seconds