Return to search

[en] FORMULATION OF GRADIENT ELASTICITY FOR HYBRID BOUNDARY METHODS / [pt] FORMULAÇÕES DE ELASTICIDADE GRADIENTE PARA ELEMENTOS HÍBRIDOS DE CONTORNO

[pt] A modelagem matemática de microdispositivos, em que estrutura e
microestrutura têm aproximadamente a mesma escala de
magnitude, assim como de
macroestruturas de natureza predominantemente granular ou
cristalina, requer uma
abordagem não-local de deformações e tensões. Há mais de cem
anos os irmãos
Cosserat já tinham desenvolvido uma teoria de grãos rígidos.
No entanto, e sem
detrimento de desenvolvimentos devidos a Toupin e outros
pesquisadores, os
trabalhos de Mindlin na década de 1960 podem ser
considerados a base da chamada
teoria gradiente de deformações, que se tornou recentemente
objeto de um grande
número de investigações analíticas e experimentais,
motivadas pelo
desenvolvimento de novos materiais estruturais e do
crescente uso de dispositivos
micro- e nanomecânicos na indústria. Mais recentemente,
Aifantis e colaboradores
conseguiram desenvolver uma teoria gradiente de deformações
mais simplificada,
com base somente em duas constantes elásticas adicionais,
representativas de
comprimentos característicos relacionados às energias de
deformação superficial e
volumétrica. Uma série de trabalhos recentes desenvolvidos
por Beskos e
colaboradores estendeu o campo de aplicações da proposta
inicial de Aifantis e
introduziu uma solução fundamental que de fato remonta aos
trabalhos de Mindlin.
A equipe de pesquisa de Beskos propôs as primeiras
implementações 2D e 3D de
elementos de contorno para análises de elasticidade
gradiente tanto estáticas quanto
no domínio da freqüência, inclusive para problemas da
mecânica da fratura. Desde o
tempo de Toupin e Mindlin procura-se estabelecer uma base
variacional da teoria e
uma formulação consistente das condições de contorno
cinemáticas e de equilíbrio,
o que parece ter tido êxito com os recentes trabalhos de
Amanatidou e Aravas. Esta
dissertação faz uma revisão da teoria gradiente da
deformações e apresenta um
estudo didático do problema mais simples que se possa
conceber, que é o de uma
barra sob diferentes tipos de ações axiais (Aifantis,
Beskos). A solução fundamental
para problemas 2D e 3D também é apresentada e estudada,
tanto em termos de
forças pontuais aplicadas, para uma implementação em termos
de elementos de
contorno, quanto de desenvolvimentos polinomiais (no caso
estático), para
implementação em termos de elementos finitos. Mostra-se que
a teoria gradiente de
deformação de Aifantis é adequada a uma formulação no
contexto do potencial de
Hellinger-Reissner, o que possibilita implementações
híbridas de elementos finitos e
de contorno. O presente trabalho de pesquisa objetiva o
estudo do estado da arte no
tema, com uma abordagem dos principais problemas de
implementação
computacional, inclusive em termos das integrais singulares
que surgem. O
desenvolvimento completo de programas de análise de
elementos híbridos finitos e
de contorno, para problemas estáticos e dinâmicos, está
planejado para uma tese de
doutorado em futuro próximo. / [en] The mathematical modeling of micro-devices in which
structure and the
microstructure are about the same scale of magnitude, as
well as of macrostructure
of markedly granular or crystal nature (microcomposites),
demands a nonlocal
approach for strains and stresses. More than one hundred
years ago the Cosserat
brothers had already developed a theory for rigid grains.
However, and in no
detriment due to Toupin and other researchers, Mindlin s
work in the 1960s may be
accounted the basis of the so-called strain gradient theory,
which has recently
become the subject of a large number of analytical and
experimental investigations
motivated by the development of news structural materials
together with the
increasing use of micro and nano-mechanical devices in the
industry. More recently,
Aifantis and coworkers managed to develop a simplified
strain gradient theory
based only on two additional elasticity constants that are
representative of material
lengths related to surface and volumetric strain energy. A
series of very recent
works done by Beskos and collaborators extended the field of
applications of
Aifantis propositions and introduced a fundamental solution
that actually remounts
to developments already laid down by Mindlin. Beskos
workgroup may be
regarded as the proponent of the first of the first boundary
element 2D and 3D
implementations on the subject for both statics and
frequency-domain analyses, also
including crack problems. Since Toupin and Mindlin`s time,
investigations have
been under development to establish the variational basis of
the theory and to
consistently formulate equilibrium and kinematic boundary
conditions established
by Amanatidou and Aravas. This dissertation makes a revision
of the gradient strain
elasticity theory and presents a didactic study of the
simplest problem that can be
conceived, i.e., a bar under different axial actions
(Aifantis, Beskos). The
fundamental solution for 2D and 3D problems is also
presented and studied for an
elastic medium submitted to a point force, for boundary
methods developments, as
well as submitted to polynomial stress fields (for static
problems), as in the hybrid
finite element method. It is shown that Aifantis strain
gradient theory may be
developed in the context of the Hellinger-Reissner
potential, for the sake of hybrid
finite and boundary element implementations. Goal of the
present research work is
as a detailed study of state art of the theme, which
comprises an investigation of the
singular integrals one must deal with in a computational
implementation. The
complete computational development for static and dynamic
hybrid boundary/finite
analyses is planned for a future doctoral thesis.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:13048
Date13 February 2009
CreatorsDANIEL HUAMAN MOSQUEIRA
ContributorsNEY AUGUSTO DUMONT
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguageEnglish
TypeTEXTO

Page generated in 0.0089 seconds