Return to search

Early stopping for iterative estimation procedures

Diese Dissertation ist ein Beitrag zum Forschungsfeld Early stopping im Kontext iterativer Schätzverfahren. Wir betrachten Early stopping dabei sowohl aus der Perspektive impliziter Regularisierungsverfahren als auch aus der Perspektive adaptiver Methoden Analog zu expliziter Regularisierung reduziert das Stoppen eines Schätzverfahrens den stochastischen Fehler/die Varianz des endgültigen Schätzers auf Kosten eines zusätzlichen Approximationsfehlers/Bias. In diesem Forschungsbereich präsentieren wir eine neue Analyse des Gradientenabstiegsverfahrens für konvexe Lernprobleme in einem abstrakten Hilbert-Raum. Aus der Perspektive adaptiver Methoden müssen iterative Schätzerverfahren immer mit einer datengetriebenen letzten Iteration m kombiniert werden, die sowohl under- als auch over-fitting verhindert. In diesem Forschungsbereichpräsentieren wir zwei Beiträge: In einem statistischen inversen Problem, das durch iteratives Trunkieren der Singulärwertzerlegung regularisiert wird, untersuchen wir, unter welchen Umständen optimale Adaptiertheit erreicht werden kann, wenn wir an der ersten Iteration m stoppen, an der die geglätteten Residuen kleiner sind als ein kritischer Wert. Für L2-Boosting mittels Orthogonal Matching Pursuit (OMP) in hochdimensionalen linearen Modellen beweisen wir, dass sequenzielle Stoppverfahren statistische Optimalität garantieren können. Die Beweise beinhalten eine subtile punktweise Analyse einer stochastischen Bias-Varianz-Zerlegung, die durch den
Greedy-Algorithmus, der OMP unterliegt, induziert wird. Simulationsstudien
zeigen, dass sequentielle Methoden zu deutlich reduzierten Rechenkosten die
Leistung von Standardalgorithmen wie dem kreuzvalidierten Lasso oder der
nicht-sequentiellen Modellwahl über ein hochdimensionales Akaike- Kriterium
erbringen können. / This dissertation contributes to the growing literature on early stopping in modern statistics and machine learning. We consider early stopping from the perspective of both implicit regularization and adaptive estimation. From the former, analogous to an explicit regularization method, halting an iterative estimation procedure reduces the stochastic error/variance of the final estimator at the cost of some bias. In this area, we present a novel analysis of gradient descent learning for convex loss functions in an abstract Hilbert space setting, which combines techniques from inexact optimization and concentration of measure. From the perspective of adaptive estimation, iterative estimation procedures have to be combined with a data-driven choice m of the effectively selected iteration in order to avoid under- as well as over-fitting. In this area, we present two contributions: For truncated SVD estimation in statistical inverse problems, we examine under what circumstances optimal adaptation can be achieved by early stopping at the first iteration at which the smoothed residuals are smaller than a critical value. For L2-boosting via orthogonal matching pursuit (OMP) in high dimensional linear models, we prove that sequential early stopping rules can preserve statistical optimality in terms of a general oracle inequality for the empirical risk and recently established optimal convergence rates for the population risk.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/29473
Date07 June 2024
CreatorsStankewitz, Bernhard
ContributorsReiß, Markus, Blanchard, Gilles, Lederer, Johannes
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0027 seconds