Forests perform many important ecological functions and provide numerous environmental services to humanity. Currently forests are under ever increasing pressures from humans through deforestation, changes in land use, and anthropogenic climate change. Managed forests play an important role in supplying forest products to the global population, necessitating the need to predict how forests will respond to climate change and how this will influence future wood product supplies. In this dissertation I used loblolly pine (Pinus taeda), the most extensively cultivated tree species in the United States, as a study system to simulate how climate change and forest management could alter the dynamics of managed forests in the future. Using the land component (the Community Land Model) of the widely used Community Earth System Model (CESM), I developed and validated a set of tools necessary to simulate the loblolly pine plantation system using the vegetation demography model embedded in CESM (FATES). This included developing a representation of loblolly pine using data from the literature, which was better able to capture forest growth and development observed in field studies than FATES's existing conifer tree representation. I added the ability to simulate several aspects of forest management not previously supported in FATES by creating the Vegetation Management Module, which I showed was able to realistically reproduce the common management practice of stand thinning. I used these new tools to perform simulations of how loblolly pine will grow across the Southeastern United States until the end of the 21st century, under the high and low climate change scenarios developed by the scientific community in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our experiments show that loblolly pine productivity may as much as double by the end of the century, with total wood harvest over that period increasing by almost half. I also showed that different management activities had significant effects on loblolly plantation yields, with mid-rotation stand thinning having an effect under both climate scenarios on par with increases due to the extreme climate change scenario SSP5 RCP8.5. I showed that these changes in wood yields could decrease the forest area in the Southeast required to meet the wood product demands over the rest of the century. These changes in plantation productivity could interact with socioeconomic factors to drive changes in land use and carbon storage in the Southeastern U.S. This work increases our understanding of how managed forests in the U.S.\ will be affected by climate change and how our management choices modulate that response. The techniques and tools developed here open up new areas of research into the role of forest management in the climate system. / Doctor of Philosophy / Forests benefit humans by regulating Earth's climate and by providing natural resources such as wood. In the Southeastern United States forestry is an important industry. Tree farms of southern pine trees produce a large percentage of the region's wood. Predicting how forests will grow in the future is important for planning and making investments. However, the burning of fossil fuels has increased carbon dioxide in the atmosphere and is changing Earth's climate. This is affecting how fast trees grow and how much wood can be harvested from forests. The methods that foresters have traditionally used to predict how trees will grow in the future do not account for climate change, and thus may not be as accurate in the future. An alternative is to use the computer models that scientists have developed to predict both how global climate will change in the future and how forests are influenced by climate. These computer programs can be used to predict how natural forests will grow in the future, but aren't set up to predict managed forests well. I made changes to one of these programs to make it possible to simulate the managed loblolly pine forests of the Southeastern United States. First, I tested these changes to make sure that simulated forests grew like real forests do today. Then I simulated how pine forests in Southeastern United States could grow over the next century with climate change. I found that pine forests will grow faster and allow more wood to be harvested as carbon dioxide in the atmosphere increases. If climate changes are extreme, loblolly forests could produce 70\% more wood than today by the end of the 21st century. I also showed that the manner in which forests were managed in simulations changes the amount of wood they produced, with some management practices increasing wood harvested by 50\% over the rest of the century. Because climate change could increase the amount of wood that can be produced from a fixed area of forest, I investigated how this might change the area of forest plantation in the Southeastern United States. Based on projections of demand for wood for the rest of the century I calculated how much loblolly pine forest would be needed to produce this wood over the next century. I found that increases in forest productivity due to climate change and forest management could decrease the forest area required to grow the wood we need. This could change how we use forests in the Southeastern United States, which in turn could have impacts on the climate.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/113139 |
Date | 11 January 2023 |
Creators | Rady, Joshua Michael |
Contributors | Forest Resources and Environmental Conservation, Thomas, Robert Quinn, Strahm, Brian D., Thomas, Valerie A., Seiler, John R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0024 seconds