• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise comparativa da dinâmica das ondas de Rossby a partir de anomalias da altura da superfície do mar obtidas por satélite e modelos numéricos / Comparative analysis of Rossby waves dynamics using sea surface height anomalies obtained by satellite altimeter and numerical models

Baldasso, Patricia 21 January 2016 (has links)
Dados de altura da superfície do mar medidos a partir de satélites altimétricos e saídas de dois modelos de circulação geral dos oceanos (OGCM for the Earth Simulator - OFES e Community Earth System Model - CESM) foram utilizados com o objetivo de verificar se modelos numéricos climáticos reproduzem ondas de Rossby de forma similar à observada em dados altimétricos no Atlântico Sul. Os modelos diferem quanto à forçante, o modelo OFES é forçado com dados do NECP-NCAR enquanto que o modelo CESM é acoplado com modelo atmosférico, de gelo e terrestre. Uma vez que essas ondas dependem da estrutura interna de densidade e da forçante do vento, podemos fazer inferências sobre a adequação desses dois fatores nos modelos à realidade observada pelo altímetro. Uma série de filtros de resposta impulsiva finita 2D (FIR-2D) foi aplicada aos dados de anomalia da altura da superfície do mar com o propósito de detectar as ondas de Rossby e as componentes de onda encontradas nos dados dos modelos foram comparadas com as do altímetro. Os dois modelos são capazes de reproduzir ondas de Rossby e apresentam melhores resultados em baixas latitudes. Porém o modelo OFES apresentou mais dificuldades para reproduzir os parâmetros de onda encontrados no altímetro apresentando diferenças médias de até 68% para a amplitude, 34% para o comprimento de onda e 38% para a velocidade de fase. Em contrapartida as maiores diferenças médias entre os parâmetros de onda calculados a partir dos dados altimétricos e do modelo CESM foram de 32% para a amplitude, 20% para o comprimento de onda e 20% para a velocidade de fase. Além disso, o modelo CESM foi capaz de reproduzir o sinal sazonal com uma correlação média de aproximadamente 0,7 com o sinal sazonal encontrado pelo altímetro em toda a bacia do oceano Atlântico Sul enquanto que o sinal sazonal do modelo OFES apresentou uma correlação média de 0,4 com o sinal encontrado pelo satélite. Estes resultados mostram que os dois modelos reproduzem o fenômeno satisfatoriamente, sendo o CESM melhor que o OFES. A diferença dos resultados deve estar ligada aos aspectos supracitados, especificamente à forçante atmosférica e estrutura de densidade na coluna d\'água nas latitudes ao sul de 20ºS. / Sea surface height data measured from altimetry satellites and outputs of two ocean general circulation models (OGCM for the Earth Simulator - OFES and Community Earth System Model - CESM) were used to determine whether climate numerical models reproduce the Rossby waves in a manner similar to those observed in altimetry record in the South Atlantic. The models differs in the forcing, OFES is forced with NCEP-NCAR data while CESM is coupled with atmospheric model, ice and land model. Because these waves depend on the internal density structure and wind forcing, we can make inferences about the suitability of these two factors in the models in comparison with the altimetry data used as a reference. A series of finite impulse response band-pass filters (FIR-2D) was applied to isolate the westward propagating signals corresponding to Rossby waves in the altimeter. Both models are able to reproduce Rossby waves and show better results in low latitudes. However, the OFES model presented more difficulty to reproduce the wave parameters found in altimeter with differences of up to 68% for amplitude, 34% for the wavelength and 38% for phase velocity. By contrast the greatest differences between the wave parameters computed from the altimeter data and the CESM model were 32% for amplitude, 20% for the wavelength and 20% for phase velocity. Furthermore, the CESM model was capable of reproducing the seasonal signal correlation with an average of approximately 0.7 with altimeter\'s seasonal signal found throughout the South Atlantic basin, while the OFES\'s seasonal signal showed an average correlation 0.4 with the signal found by the satellite. These results indicate that both models can reproduce the phenomenon satisfactorily, the CESM better than OFES. The difference between the results should be related with the aspects cited above, specifically with the atmospheric forcing and the density structure in the water column in latitudes southern then 20ºS.
2

Análise comparativa da dinâmica das ondas de Rossby a partir de anomalias da altura da superfície do mar obtidas por satélite e modelos numéricos / Comparative analysis of Rossby waves dynamics using sea surface height anomalies obtained by satellite altimeter and numerical models

Patricia Baldasso 21 January 2016 (has links)
Dados de altura da superfície do mar medidos a partir de satélites altimétricos e saídas de dois modelos de circulação geral dos oceanos (OGCM for the Earth Simulator - OFES e Community Earth System Model - CESM) foram utilizados com o objetivo de verificar se modelos numéricos climáticos reproduzem ondas de Rossby de forma similar à observada em dados altimétricos no Atlântico Sul. Os modelos diferem quanto à forçante, o modelo OFES é forçado com dados do NECP-NCAR enquanto que o modelo CESM é acoplado com modelo atmosférico, de gelo e terrestre. Uma vez que essas ondas dependem da estrutura interna de densidade e da forçante do vento, podemos fazer inferências sobre a adequação desses dois fatores nos modelos à realidade observada pelo altímetro. Uma série de filtros de resposta impulsiva finita 2D (FIR-2D) foi aplicada aos dados de anomalia da altura da superfície do mar com o propósito de detectar as ondas de Rossby e as componentes de onda encontradas nos dados dos modelos foram comparadas com as do altímetro. Os dois modelos são capazes de reproduzir ondas de Rossby e apresentam melhores resultados em baixas latitudes. Porém o modelo OFES apresentou mais dificuldades para reproduzir os parâmetros de onda encontrados no altímetro apresentando diferenças médias de até 68% para a amplitude, 34% para o comprimento de onda e 38% para a velocidade de fase. Em contrapartida as maiores diferenças médias entre os parâmetros de onda calculados a partir dos dados altimétricos e do modelo CESM foram de 32% para a amplitude, 20% para o comprimento de onda e 20% para a velocidade de fase. Além disso, o modelo CESM foi capaz de reproduzir o sinal sazonal com uma correlação média de aproximadamente 0,7 com o sinal sazonal encontrado pelo altímetro em toda a bacia do oceano Atlântico Sul enquanto que o sinal sazonal do modelo OFES apresentou uma correlação média de 0,4 com o sinal encontrado pelo satélite. Estes resultados mostram que os dois modelos reproduzem o fenômeno satisfatoriamente, sendo o CESM melhor que o OFES. A diferença dos resultados deve estar ligada aos aspectos supracitados, especificamente à forçante atmosférica e estrutura de densidade na coluna d\'água nas latitudes ao sul de 20ºS. / Sea surface height data measured from altimetry satellites and outputs of two ocean general circulation models (OGCM for the Earth Simulator - OFES and Community Earth System Model - CESM) were used to determine whether climate numerical models reproduce the Rossby waves in a manner similar to those observed in altimetry record in the South Atlantic. The models differs in the forcing, OFES is forced with NCEP-NCAR data while CESM is coupled with atmospheric model, ice and land model. Because these waves depend on the internal density structure and wind forcing, we can make inferences about the suitability of these two factors in the models in comparison with the altimetry data used as a reference. A series of finite impulse response band-pass filters (FIR-2D) was applied to isolate the westward propagating signals corresponding to Rossby waves in the altimeter. Both models are able to reproduce Rossby waves and show better results in low latitudes. However, the OFES model presented more difficulty to reproduce the wave parameters found in altimeter with differences of up to 68% for amplitude, 34% for the wavelength and 38% for phase velocity. By contrast the greatest differences between the wave parameters computed from the altimeter data and the CESM model were 32% for amplitude, 20% for the wavelength and 20% for phase velocity. Furthermore, the CESM model was capable of reproducing the seasonal signal correlation with an average of approximately 0.7 with altimeter\'s seasonal signal found throughout the South Atlantic basin, while the OFES\'s seasonal signal showed an average correlation 0.4 with the signal found by the satellite. These results indicate that both models can reproduce the phenomenon satisfactorily, the CESM better than OFES. The difference between the results should be related with the aspects cited above, specifically with the atmospheric forcing and the density structure in the water column in latitudes southern then 20ºS.
3

Last Millennium volcanism impact on the South Atlantic Ocean / Impacto das erupções do último milênio no Oceano Atlântico Sul

Verona, Laura Sobral 22 March 2018 (has links)
Volcanism is the cause of great non-anthropogenic perturbations on the Earth climate through energy imbalance changes. There is still much to be uncovered relative to its impacts on the Southern Hemisphere, even more with respect to the Southern Ocean. The South Atlantic and its Southern Ocean sector response to volcanism are examined using simulation results from the Last Millennium Ensemble Experiment of the Community Earth System Model (CESM-LME), for the period 850-2005. Composite results point to significant changes in sea surface temperature and salinity in the first austral summer following the eruption. North of 60S, there is ocean cooling, as expected because of the higher albedo related to the volcanic forcing. In contrast, near the Antarctic Peninsula in the Weddell Sea, a local warming of ∼ 0.8ºC is observed (significant at the 90% level). Salinity shows positive anomaly (∼0.1) at the northern region off Antarctic Peninsula from the first year after the eruption to the fourth subsequent year. Oceanic surface anomalies weaken after the fifth subsequent year, however it is still present in deeper layers (∼500m). At the same time, wind stress changes are evident, results show a poleward shift (∼2º), strengthening (∼10%) of the prevailing westerlies and the reversal in direction of the meridional wind stress component in the northern Antarctic Peninsula. As consequence, there is intensification of the Antarctic Circumpolar Current southern extension. Together with the stronger westerlies, the mixing in the northern Antarctic Peninsula is enhanced, bringing up warmer subsurface waters, therefore explaining the anomalous surface warming after the eruption. The 1991 Mt. Pinatubo eruption response is also investigated. CESM-LME, observations and reanalysis have shown similar behavior, however for the second subsequent year, thus suggesting the occurrence of the same mechanism identified after Last Millennium eruptions. / Vulcanismo é uma das maiores causas naturais de mudanças no clima. Poucos estudos tiveram foco no seu impacto no hemisfério sul, principalmente no Oceano Austral. Desta forma, o impacto de erupções vulcânicas é investigado no Oceano Atlântico Sul incluindo o seu setor austral, em resultados do modelo CESM-LME (Community Earth System Model Last Millennium Ensemble) entre 850 e 2005. Os resultados utilizando composições mostram mudanças significativas na temperatura e salinidade da superfície do oceano no primeiro verão austral depois da erupção. Ao norte de 60S, há uma anomalia negativa de ∼ -0.8ºC na temperatura em superfície, devido ao maior albedo após a erupção. No entanto, próximo à Península Antártica no Mar de Weddell, é visto uma anomalia positiva de ∼0.8ºC (significativa a 90%). A salinidade apresenta mudanças importantes entre o primeiro e o quarto ano após a erupção, com anomalia positiva (∼0.1) ao norte da Península Antártica. A resposta ao vulcanismo em superfície desaparece no quinto ano sequente, mas permanecem anomalias em profundidade (∼500m). O campo de vento também se altera no mesmo ano, os ventos de oeste migram para sul (∼2º) e se intensificam (∼10%), além da componente meridional inverter seu sentido ao norte da Península Antártica. Como consequência, é observada intensificação da borda sul da Corrente Circumpolar Antártica. Junto com isto, há aumento da mistura próximo à Península Antártica, desta forma, águas subsuperficiais mais quentes afloram, explicando a anomalia quente após a erupção. Finalmente, é verificada a ocorrência de resposta similar após a erupção do Monte Pinatubo (1991). Resultados do CESM-LME tiveram comportamento aproximado quando comparados com dados observacionais e reanálise. O aquecimento próximo à Península Antártica é evidenciado no segundo ano após a erupção, sugerindo a ocorrência do mesmo mecanismo do último milênio.
4

Community Earth System Model: Implementation, Validation, and Applications

Porter, William Christian 01 January 2012 (has links)
The Community Earth System Model (CESM) is a coupling of five different models which are combined to simulate the dynamic interactions between and within the Earth's atmosphere, ocean, land, land-ice, and sea-ice. In this work, the installation and testing of CESM on Portland State University's Cluster for Climate Change and Aerosol Research (CsAR) is described and documented, and two research applications of the model are performed. First, the improved treatment of cloud microphysics within recent versions of CESM's atmospheric module is applied to an examination of changes in shortwave cloud forcing (SWCF) and results are compared to output from older versions of the model. Second, the CESM model is applied to an examination of the effect that increased methane (CH4) concentrations have had on the catalytic destruction of stratospheric ozone (O3) by ozone depleting compounds (ODCs) such as chlorofluorocarbons (CFCs) and nitrous oxide (N2O).
5

Exploring the Interaction of Forest Management and Climate in the Community Land Model

Rady, Joshua Michael 11 January 2023 (has links)
Forests perform many important ecological functions and provide numerous environmental services to humanity. Currently forests are under ever increasing pressures from humans through deforestation, changes in land use, and anthropogenic climate change. Managed forests play an important role in supplying forest products to the global population, necessitating the need to predict how forests will respond to climate change and how this will influence future wood product supplies. In this dissertation I used loblolly pine (Pinus taeda), the most extensively cultivated tree species in the United States, as a study system to simulate how climate change and forest management could alter the dynamics of managed forests in the future. Using the land component (the Community Land Model) of the widely used Community Earth System Model (CESM), I developed and validated a set of tools necessary to simulate the loblolly pine plantation system using the vegetation demography model embedded in CESM (FATES). This included developing a representation of loblolly pine using data from the literature, which was better able to capture forest growth and development observed in field studies than FATES's existing conifer tree representation. I added the ability to simulate several aspects of forest management not previously supported in FATES by creating the Vegetation Management Module, which I showed was able to realistically reproduce the common management practice of stand thinning. I used these new tools to perform simulations of how loblolly pine will grow across the Southeastern United States until the end of the 21st century, under the high and low climate change scenarios developed by the scientific community in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our experiments show that loblolly pine productivity may as much as double by the end of the century, with total wood harvest over that period increasing by almost half. I also showed that different management activities had significant effects on loblolly plantation yields, with mid-rotation stand thinning having an effect under both climate scenarios on par with increases due to the extreme climate change scenario SSP5 RCP8.5. I showed that these changes in wood yields could decrease the forest area in the Southeast required to meet the wood product demands over the rest of the century. These changes in plantation productivity could interact with socioeconomic factors to drive changes in land use and carbon storage in the Southeastern U.S. This work increases our understanding of how managed forests in the U.S.\ will be affected by climate change and how our management choices modulate that response. The techniques and tools developed here open up new areas of research into the role of forest management in the climate system. / Doctor of Philosophy / Forests benefit humans by regulating Earth's climate and by providing natural resources such as wood. In the Southeastern United States forestry is an important industry. Tree farms of southern pine trees produce a large percentage of the region's wood. Predicting how forests will grow in the future is important for planning and making investments. However, the burning of fossil fuels has increased carbon dioxide in the atmosphere and is changing Earth's climate. This is affecting how fast trees grow and how much wood can be harvested from forests. The methods that foresters have traditionally used to predict how trees will grow in the future do not account for climate change, and thus may not be as accurate in the future. An alternative is to use the computer models that scientists have developed to predict both how global climate will change in the future and how forests are influenced by climate. These computer programs can be used to predict how natural forests will grow in the future, but aren't set up to predict managed forests well. I made changes to one of these programs to make it possible to simulate the managed loblolly pine forests of the Southeastern United States. First, I tested these changes to make sure that simulated forests grew like real forests do today. Then I simulated how pine forests in Southeastern United States could grow over the next century with climate change. I found that pine forests will grow faster and allow more wood to be harvested as carbon dioxide in the atmosphere increases. If climate changes are extreme, loblolly forests could produce 70\% more wood than today by the end of the 21st century. I also showed that the manner in which forests were managed in simulations changes the amount of wood they produced, with some management practices increasing wood harvested by 50\% over the rest of the century. Because climate change could increase the amount of wood that can be produced from a fixed area of forest, I investigated how this might change the area of forest plantation in the Southeastern United States. Based on projections of demand for wood for the rest of the century I calculated how much loblolly pine forest would be needed to produce this wood over the next century. I found that increases in forest productivity due to climate change and forest management could decrease the forest area required to grow the wood we need. This could change how we use forests in the Southeastern United States, which in turn could have impacts on the climate.
6

What to plant and where to plant it; Modeling the biophysical effects of North America temperate forests on climate using the Community Earth System Model

Ahlswede, Benjamin James 21 July 2015 (has links)
Forests affect climate by absorbing CO₂ but also by altering albedo, latent heat flux, and sensible heat flux. In this study we used the Community Earth System Model to assess the biophysical effect of North American temperate forests on climate and how this effect changes with location, tree type, and forest management. We calculated the change in annual temperature and energy balance associated with afforestation with either needle leaf evergreen trees (NET) or broadleaf deciduous trees (BDT) and between forests with high and low leaf-area indices (LAI). Afforestation from crops to forests resulted in lower albedo and higher sensible heat flux but no consistent difference in latent heat flux. Forests were consistently warmer than crops at high latitudes and colder at lower latitudes. In North America, the temperature response from afforestation shifted from warming to cooling between 34° N and 40° N for ground temperature and between 21° N and 25° N for near surface air temperature. NET tended to have lower albedo, higher sensible heat flux and warmer temperatures than BDT. The effect of tree PFT was larger than the effect of afforestation in the south and in the mid-Atlantic. Increasing LAI, a proxy for increased management intensity, caused a cooling effect in both tree types, but NET responded more strongly and albedo decreased while albedo increased for BDT. Our results show that forests' location, tree type, and management intensity can have nearly equal biophysical effects on temperature. A forest will have maximum biophysical cooling effect if it is in the south, composed of broadleaf PFT, and is managed to maximize leaf area index. / Master of Science

Page generated in 0.0349 seconds