• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise Quantitativa das Massas de Água dos Mares de Ross e Weddell, Antártica / Quantitative Analysis of the Water Masses in Ross and Weddell Seas, Antarctic

Hille, Elizandra 05 March 2013 (has links)
A complexa interação que ocorre entre os processos oceânicos e atmosféricos no Oceano Austral afeta a circulação oceânica global em diferentes camadas. O Mar de Weddell e o Mar de Ross possuem reconhecida importância na formação da Água de Fundo Antártica (AABW). O objetivo principal deste trabalho é caracterizar as massas de água dos Mares de Weddell e Ross, através dos dados mais recentes de reanálise oceânica SODA (Simple Ocean Data Assimilation). Através da técnica de separação de massas de água Análise Multiparamétrica Ótima (AMO) foi possível a identificação de 3 principais massas de água no Mar de Ross: Água Profunda Circumpolar Superior (UCDW), Água Profunda Circumpolar Inferior (LCDW) e Água de Plataforma de Baixa Salinidade (LSSW). A UCDW foi a que apresentou a maior variabilidade, não atingindo a Plataforma de gelo do MR durante os anos de 1950-1974. No Mar de Weddell foi possível a identificação das seguintes massas de água: Água Profunda Cálida (WDW), Água Profunda do Mar de Weddell (WSDW) e Água de Fundo do Mar de Weddell (WSBW). A WDW atingiu valores >70% à 800m. A WSDW possui em seu núcleo valores > 90% entre 2000 e 3500m. A WSBW, apresenta ~100% em profundidades > 4000m. / The complex interaction that occurs between the oceanic and atmospheric processes in the Southern Ocean affects global ocean circulation in different layers. The Weddell and Ross Seas have recognized importance in the formation of Antarctic Bottom Water (AABW). This work aims to characterize the water masses of the Weddell and Ross Seas, using the latest ocean data reanalysis SODA (Simple Ocean Data Assimilation). Through the water masses separation technique, Optimum Multiparameter Analysis (OMP), it was possible to identify three main water masses in Ross Sea: Upper Circumpolar Deep Water (UCDW), Lower Circumpolar Deep Water (LCDW) and Low Salinity Shelf Water (LSSW). UCDW showed the greatest variability, not reaching the Ross Sea Ice Shelf during the years 1950-1974. It was possible to identify the following water masses in Weddell Sea: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). WDW reached values up to 70% in 800m. WSDW has in its core values > 90% between 2000 and 3500m. WSBW presents a contribution up to 100% at depths > 4000m.
2

Comunidade bêntica da área da plataforma de gelo Larsen A (Antártica) 17 anos após sua desintegração, com ênfase na meiofauna / Benthic community from the Larsen A ice shelf (Antartica) 17 years after its collapse, emphasis on Nematoda

Ribeiro, Maria Carolina Hernandez 09 March 2015 (has links)
A desintegração da plataforma de gelo da enseada Larsen A, em 1995, possibilitou uma oportunidade para estudar a comunidade bêntica da região. Foram analisadas a densidade da macrofauna e a densidade e biomassa da meiofauna. Duas estações na região de mar aberto, no Mar de Weddell, também foram coletadas, para comparações entre diferentes ambientes. Parâmetros ambientais também foram analisados, e serviram para tentar explicar a variação da fauna bêntica. Na região do Mar de Weddell as porcentagens de matéria orgânica foram maiores que na enseada Larsen A, provavelmente um reflexo da maior produtividade primária da área, enquanto as porcentagens de carbonato foram mais altas na enseada do que em mar aberto. A granulometria variou entre silte arenoso a areia síltica, sendo as estações no Mar de Weddell tiveram maiores porcentagens de areia. Em relação à fauna, Nematoda foi o táxon mais abundante, seguido por Copepoda e Nauplii dentro da meiofauna, enquanto Bivalvia e Polychaeta foram os mais abundantes dentro da macrofauna. As maiores densidades de meio- e macrofauna foram encontradas nas estações de mar aberto, e apresentaram correlação com as concentrações de pigmentos. A biomassa total dos nemátodes se correlacionou à biomassa individual do grupo, enquanto a biomassa dos copépodes se correlacionou com a densidade do grupo. Através dos resultados obtidos no presente trabalho foi possível observar que as comunidades bênticas das duas regiões estudadas diferem entre si, em termos de densidade e número de grandes grupos encontrados. E que a disponibilidade de alimento é o principal fator estruturados da fauna na região. / The collapse of the Larsen A ice shelf, in 1995, allowed an opportunity to study the benthic community in the region. The density of macrofauna and the density and biomass of meiofauna were analyzed. Two open water stations in the Weddell Sea were also collected for comparisons between different environments. Environmental parameters were analyzed to look for possible relations with benthic fauna distribution, abundance and biomass. In the Weddell Sea region the percentage of organic matter were higher than in the Larsen A, which was probably a reflection of the higher primary productivity of the area, while the carbonate percentages were higher in the bay than in open water. Particle size ranged from sandy silt to siltic sand, with Weddell Sea stations presenting higher sand content. Nematoda was the most abundant meiofauna taxon, followed by copepods and Nauplii, while Bivalvia and Polychaeta were the most abundant macrofauna. The highest densities of meio- and macrofauna were found in the open sea stations, and were correlated with pigment concentrations. The total nematode biomass was correlated with nematode individual biomass of the group, while copepod biomass correlated with its density. We observed that the benthic communities differed between studied areas in terms of density and taxon richness. Food availability appears to be the main factor structuring fauna in the region.
3

Future Changes of the Antarctic Coastal Current as seen from a Downscaling Experiment / Mudanças Futuras na Corrente Costeira da Antártica vistas através de um Experimento Regional

Santos, Marina Noro dos 28 May 2018 (has links)
Climate global models have contributed to the understanding of climate changes impacts on several Earth system processes. It is known that impacts on the ocean large scale circulation are considerably relevant. However, these models are not suitable to represent regional scale processes. Therefore, to evaluate the climate change impacts on small scale processes downscaling is necessary. This study was divided in two parts. The first part consists of evaluation and understanding of the behavior of the Southern Ocean circulation from a large scale perspective. For this, we used the ocean component (Parallel Ocean Program version 2 - POP2) of the National Center for Atmospheric Research Community Earth System Model version 1 (NCAR-CESM1.0). The second part aimed to evaluate the Antarctic Coastal Current (ACoC) in the Weddell Sea through high-resolution regional simulations with the Regional Ocean model System (ROMS) which were forced with results from NCAR Community Climate System Model version 3.0 (NCAR-CCSM3), an earlier version of NCAR-CESM1, experiments of the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 4 (AR4). The first simulation was forced with 20th century historical scenario (ROMS-20C3M) and comprises the 1980 to 1999 period, whereas the second run considers the 21st century scenario A2 (ROMS-SRESA2) which comprises the 2021 to 2047 period. Results from CESM1-POP2 represents satisfactorily the large scale mean patterns and is in agreement with available data. The results show the limitation of these models to reproduce important features of the coastal region, which makes downscaling necessary to understanding smaller scale processes. The ACoC and its transport (≈ 22 Sv) were satisfactorily represented by regional simulations. From the 20th to 21st century projections, weakening of the ACoC transport was observed and shown to be mainly related with changes in the termohaline forcing. / A utilização de modelos climáticos globais tem contribuído para o entendimento dos efeitos da mudança no clima em diversos processos do sistema terrestre. Os impactos na circulação oceânica de larga escala são conhecidamente relevantes. Porém, esses modelos não são adequados para a representação de processos na escala regional. Dessa forma, para avaliar os impactos da mudança do clima nos processos de menor escala a regionalização numérica é necessária. Este trabalho foi dividido em duas partes. A primeira consiste na avaliação e entendimento do comportamento da circulação no Oceano Austral do ponto de vista da larga escala. Para isso a componente oceânica (Parallel Ocean Program version 2 - POP2) do National Center for Atmospheric Research - Community Earth System Model version 1 (NCAR-CESM1.0) foi utilizada. A segunda parte teve como objetivo avaliar as mudanças na Corrente Costeira Antártica (CCoA) no Mar de Weddell através de simulações regionais de alta resolução com o Regional Ocean Model System (ROMS) forçados com dois experimentos do NCAR - Community Climate System Model version 3.0 (NCAR-CCSM3) para os cenários do Intergovernmental Panel on Climate Change (IPCC) Assessment Report 4 (AR4). A primeira simulação foi forçada com o cenário histórico do século XX (ROMS-20C3M) e compreende o período de 1980 a 1999, já a segunda considera o cenário pessimista A2 (ROMS-SRESA2) para o século XXI e compreende o período de 2021 a 2047. Os resultados obtidos do CESM1-POP2 mostraram que o modelo representa de forma satisfatória os padrões de larga escala e concordam com os dados disponíveis. Os resultados também evidenciam a limitação de modelos como esse em reproduzir características importantes da região costeira, o que torna necessário a reginoalização para o entendimento dos processos de menor escala. Os resultados das simulações regionais reproduziram de forma consistente a CCoA e o seu transporte (≈ 22 Sv). Do cenário do século XX para o do século XXI houve um enfraquecimento do transporte da CCoA, que mostrou estar relacionado principalmente à mudanças na forçante termohalina.
4

Last Millennium volcanism impact on the South Atlantic Ocean / Impacto das erupções do último milênio no Oceano Atlântico Sul

Verona, Laura Sobral 22 March 2018 (has links)
Volcanism is the cause of great non-anthropogenic perturbations on the Earth climate through energy imbalance changes. There is still much to be uncovered relative to its impacts on the Southern Hemisphere, even more with respect to the Southern Ocean. The South Atlantic and its Southern Ocean sector response to volcanism are examined using simulation results from the Last Millennium Ensemble Experiment of the Community Earth System Model (CESM-LME), for the period 850-2005. Composite results point to significant changes in sea surface temperature and salinity in the first austral summer following the eruption. North of 60S, there is ocean cooling, as expected because of the higher albedo related to the volcanic forcing. In contrast, near the Antarctic Peninsula in the Weddell Sea, a local warming of ∼ 0.8ºC is observed (significant at the 90% level). Salinity shows positive anomaly (∼0.1) at the northern region off Antarctic Peninsula from the first year after the eruption to the fourth subsequent year. Oceanic surface anomalies weaken after the fifth subsequent year, however it is still present in deeper layers (∼500m). At the same time, wind stress changes are evident, results show a poleward shift (∼2º), strengthening (∼10%) of the prevailing westerlies and the reversal in direction of the meridional wind stress component in the northern Antarctic Peninsula. As consequence, there is intensification of the Antarctic Circumpolar Current southern extension. Together with the stronger westerlies, the mixing in the northern Antarctic Peninsula is enhanced, bringing up warmer subsurface waters, therefore explaining the anomalous surface warming after the eruption. The 1991 Mt. Pinatubo eruption response is also investigated. CESM-LME, observations and reanalysis have shown similar behavior, however for the second subsequent year, thus suggesting the occurrence of the same mechanism identified after Last Millennium eruptions. / Vulcanismo é uma das maiores causas naturais de mudanças no clima. Poucos estudos tiveram foco no seu impacto no hemisfério sul, principalmente no Oceano Austral. Desta forma, o impacto de erupções vulcânicas é investigado no Oceano Atlântico Sul incluindo o seu setor austral, em resultados do modelo CESM-LME (Community Earth System Model Last Millennium Ensemble) entre 850 e 2005. Os resultados utilizando composições mostram mudanças significativas na temperatura e salinidade da superfície do oceano no primeiro verão austral depois da erupção. Ao norte de 60S, há uma anomalia negativa de ∼ -0.8ºC na temperatura em superfície, devido ao maior albedo após a erupção. No entanto, próximo à Península Antártica no Mar de Weddell, é visto uma anomalia positiva de ∼0.8ºC (significativa a 90%). A salinidade apresenta mudanças importantes entre o primeiro e o quarto ano após a erupção, com anomalia positiva (∼0.1) ao norte da Península Antártica. A resposta ao vulcanismo em superfície desaparece no quinto ano sequente, mas permanecem anomalias em profundidade (∼500m). O campo de vento também se altera no mesmo ano, os ventos de oeste migram para sul (∼2º) e se intensificam (∼10%), além da componente meridional inverter seu sentido ao norte da Península Antártica. Como consequência, é observada intensificação da borda sul da Corrente Circumpolar Antártica. Junto com isto, há aumento da mistura próximo à Península Antártica, desta forma, águas subsuperficiais mais quentes afloram, explicando a anomalia quente após a erupção. Finalmente, é verificada a ocorrência de resposta similar após a erupção do Monte Pinatubo (1991). Resultados do CESM-LME tiveram comportamento aproximado quando comparados com dados observacionais e reanálise. O aquecimento próximo à Península Antártica é evidenciado no segundo ano após a erupção, sugerindo a ocorrência do mesmo mecanismo do último milênio.
5

Comunidade bêntica da área da plataforma de gelo Larsen A (Antártica) 17 anos após sua desintegração, com ênfase na meiofauna / Benthic community from the Larsen A ice shelf (Antartica) 17 years after its collapse, emphasis on Nematoda

Maria Carolina Hernandez Ribeiro 09 March 2015 (has links)
A desintegração da plataforma de gelo da enseada Larsen A, em 1995, possibilitou uma oportunidade para estudar a comunidade bêntica da região. Foram analisadas a densidade da macrofauna e a densidade e biomassa da meiofauna. Duas estações na região de mar aberto, no Mar de Weddell, também foram coletadas, para comparações entre diferentes ambientes. Parâmetros ambientais também foram analisados, e serviram para tentar explicar a variação da fauna bêntica. Na região do Mar de Weddell as porcentagens de matéria orgânica foram maiores que na enseada Larsen A, provavelmente um reflexo da maior produtividade primária da área, enquanto as porcentagens de carbonato foram mais altas na enseada do que em mar aberto. A granulometria variou entre silte arenoso a areia síltica, sendo as estações no Mar de Weddell tiveram maiores porcentagens de areia. Em relação à fauna, Nematoda foi o táxon mais abundante, seguido por Copepoda e Nauplii dentro da meiofauna, enquanto Bivalvia e Polychaeta foram os mais abundantes dentro da macrofauna. As maiores densidades de meio- e macrofauna foram encontradas nas estações de mar aberto, e apresentaram correlação com as concentrações de pigmentos. A biomassa total dos nemátodes se correlacionou à biomassa individual do grupo, enquanto a biomassa dos copépodes se correlacionou com a densidade do grupo. Através dos resultados obtidos no presente trabalho foi possível observar que as comunidades bênticas das duas regiões estudadas diferem entre si, em termos de densidade e número de grandes grupos encontrados. E que a disponibilidade de alimento é o principal fator estruturados da fauna na região. / The collapse of the Larsen A ice shelf, in 1995, allowed an opportunity to study the benthic community in the region. The density of macrofauna and the density and biomass of meiofauna were analyzed. Two open water stations in the Weddell Sea were also collected for comparisons between different environments. Environmental parameters were analyzed to look for possible relations with benthic fauna distribution, abundance and biomass. In the Weddell Sea region the percentage of organic matter were higher than in the Larsen A, which was probably a reflection of the higher primary productivity of the area, while the carbonate percentages were higher in the bay than in open water. Particle size ranged from sandy silt to siltic sand, with Weddell Sea stations presenting higher sand content. Nematoda was the most abundant meiofauna taxon, followed by copepods and Nauplii, while Bivalvia and Polychaeta were the most abundant macrofauna. The highest densities of meio- and macrofauna were found in the open sea stations, and were correlated with pigment concentrations. The total nematode biomass was correlated with nematode individual biomass of the group, while copepod biomass correlated with its density. We observed that the benthic communities differed between studied areas in terms of density and taxon richness. Food availability appears to be the main factor structuring fauna in the region.
6

Análise Quantitativa das Massas de Água dos Mares de Ross e Weddell, Antártica / Quantitative Analysis of the Water Masses in Ross and Weddell Seas, Antarctic

Elizandra Hille 05 March 2013 (has links)
A complexa interação que ocorre entre os processos oceânicos e atmosféricos no Oceano Austral afeta a circulação oceânica global em diferentes camadas. O Mar de Weddell e o Mar de Ross possuem reconhecida importância na formação da Água de Fundo Antártica (AABW). O objetivo principal deste trabalho é caracterizar as massas de água dos Mares de Weddell e Ross, através dos dados mais recentes de reanálise oceânica SODA (Simple Ocean Data Assimilation). Através da técnica de separação de massas de água Análise Multiparamétrica Ótima (AMO) foi possível a identificação de 3 principais massas de água no Mar de Ross: Água Profunda Circumpolar Superior (UCDW), Água Profunda Circumpolar Inferior (LCDW) e Água de Plataforma de Baixa Salinidade (LSSW). A UCDW foi a que apresentou a maior variabilidade, não atingindo a Plataforma de gelo do MR durante os anos de 1950-1974. No Mar de Weddell foi possível a identificação das seguintes massas de água: Água Profunda Cálida (WDW), Água Profunda do Mar de Weddell (WSDW) e Água de Fundo do Mar de Weddell (WSBW). A WDW atingiu valores >70% à 800m. A WSDW possui em seu núcleo valores > 90% entre 2000 e 3500m. A WSBW, apresenta ~100% em profundidades > 4000m. / The complex interaction that occurs between the oceanic and atmospheric processes in the Southern Ocean affects global ocean circulation in different layers. The Weddell and Ross Seas have recognized importance in the formation of Antarctic Bottom Water (AABW). This work aims to characterize the water masses of the Weddell and Ross Seas, using the latest ocean data reanalysis SODA (Simple Ocean Data Assimilation). Through the water masses separation technique, Optimum Multiparameter Analysis (OMP), it was possible to identify three main water masses in Ross Sea: Upper Circumpolar Deep Water (UCDW), Lower Circumpolar Deep Water (LCDW) and Low Salinity Shelf Water (LSSW). UCDW showed the greatest variability, not reaching the Ross Sea Ice Shelf during the years 1950-1974. It was possible to identify the following water masses in Weddell Sea: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). WDW reached values up to 70% in 800m. WSDW has in its core values > 90% between 2000 and 3500m. WSBW presents a contribution up to 100% at depths > 4000m.

Page generated in 0.057 seconds