• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Ross Sea Response to Evolving Ocean-Ice Interactions in a Changing Climate

Wiederwohl, Christina 1980- 14 March 2013 (has links)
Early 1990s to late 2000s freshening (ΔS ≈ -0.001–0.002) and warming (Δθ ≈ 0.02°C–0.035°C) of bottom waters was detected in the southern Pacific Ocean, and Ross Sea source waters progressively freshened during the past four decades. This study investigates potential freshwater anomaly sources and quantifies their effect. Glacial melt water inputs to the GCT increased by 1.3 km^3 per decade (1976– 2007), more rapidly so after 2000 (6.8 km^3 per decade), freshening local Shelf Water by 0.0004 per decade. Lighter basal melt inputs to the LAT started in 1994 and also picked up after 2000 to 14.9 km^3 per decade, lowering the local Antarctic Surface Water salinity by -0.017 per decade. Upstream in the Amundsen Sea surface water freshened by -0.03 per decade (1994–2007) mostly (50%) from larger melt water inputs from the Pine Island (17.7 km^3 per decade) and Dotson (14.8 km^3 per decade) glaciers. Two decades of steady (1978-2000) strengthening of sea ice productivity (200 km^3 per decade) within the Ross Sea Polynya suddenly reversed to weakening (-98.6 km^3 per decade) and resulted in Shelf Water freshening (-0.02 per decade) thereafter. To fully account for the observed variability in Ross Sea waters, the progressive (1992- 2011) adjustment of the density field and induced advective contributions are estimated based on a simplified three-layer stratification. Eastern (western) inflow (outflow) of light surface (dense shelf) water increased by 28% (15%) to 1.11 Sv (1.01 Sv) by 2011; whereas a sluggish intermediate inflow (0.02 Sv) of Modified Circumpolar Deep Water turned into outflow after 2007, thus contributing 0.09 Sv by 2011 to the ventilation of deep waters farther offshore. The estimated evolution of overturning and advective salt fluxes in the Ross Sea yield overall freshening of water masses similar to those derived from observations. Volumetric mean salinities declined at -0.07 per decade for Antarctic Surface Water, -0.05 per decade for Modified Circumpolar Water, and -0.03 per decade for Shelf Water. Outflow intensification of Shelf Water mixtures is also consistent with bottom water property changes (freshening and warming) measured farther downstream in the southern Pacific Ocean.
2

High-latitude sedimentation in response to climate variability during the Cenozoic

Varela Valenzuela, Natalia Ines 03 January 2024 (has links)
Here we investigate sedimentological responses to past climate change in shallow to deep marine depositional environments. Our primary study spans from the Late Pliocene to the Pleistocene (3.3 to 0.7 Ma), and features results from two International Ocean Discovery Program (IODP) Sites U1525 and U1524. Each of these sites is discussed in separate chapters here (Chapters 1 and 2). This interval experienced the change from the warming of the Late Pliocene, known as the Mid-Piacenzian Warming Period, to the Pleistocene cooling. This shift significantly impacted the expansion of the West Antarctic Ice Sheet, sea ice/polynya formation, and, notably, the genesis of Antarctic Bottom Water (AABW), a crucial component of the global thermohaline circulation. In Chapter 1, we propose that turbidite currents, arising from the formation of dense shelf water (DSW) in the Ross Sea (a precursor to AABW), leave a distinct record in the levees of Hillary Canyon. This canyon acts as a conduit, channeling DSW into the deep ocean and contributing to AABW production. By analyzing turbidite beds based on their frequency, thickness, and grain size, we gain insights into the historical occurrence and magnitude of these currents. Furthermore, we explore the influence of factors such as shelf availability and sea ice/polynya formation within the broader climate context of AABW formation. Chapter 2 shifts its focus to the sedimentological variability from shelf-to-slope along Hillary Canyon. This chapter examines the turbidite record associated with AABW formation within the shared timeframe (2.1 to 0.7 million years ago) between IODP Sites U1524 and U1525, and the impact of along slope currents and other processes in the sedimentary deposition and transport. The second study interval (Chapter 3), focuses on the regional sedimentological response proximal to a hydrothermal vent complex associated with the Paleocene-Eocene Thermal Maximum (PETM; ca. 56 Ma), a global warming event during which thousands of Gt C was released into the ocean-atmosphere on Kyr timescales. IODP Site U1568, strategically located near the hydrothermal vent complex and part of a broader drilling transect in the Modgunn Arch, North Atlantic, is the main study subject. This site's proximity to the vent complex offers a distinctive environment for refining our understanding of stratigraphy and sedimentology within the PETM. We achieve this through a comprehensive analysis of grain size and composition, coupled with a comparison to XRF data. Our findings show that the timing between the onset of the PETM and the response of the sedimentary system to the warming, reflected in the grain size coarsening after the start of the PETM, is not synchronous. Notably, the transition from a marine to a more terrestrial composition predates this shift in grain size, aligning with the PETM onset instead. / Doctor of Philosophy / Deep-marine core records are invaluable sources of sedimentological information that provide insights into the ocean's response to past climates. These cores, extracted from the deep-ocean floor, contain layers of sediment that accumulate over time because of the different processes that occur in the ocean. Analyzing these sediments, by looking at their physical characteristics like how frequently are they deposited, the thickness of the layers, their grain size, and their composition helps to reconstruct past environmental conditions and understand how the oceans have responded to climatic changes. This dissertation focuses on studying the record of two main processes. The first one is the sedimentary record left behind by the formation of Antarctic Bottom Water (AABW), one of the coldest (-1°C), deepest (> 2000 meters below sea level), and densest water masses in the ocean. AABW is a key component of the global ocean circulation system, often referred to as the "global conveyor belt" or the thermohaline circulation. This circulation pattern plays a crucial role in redistributing heat, salt, and nutrients around the world's oceans. AABW is formed near Antarctica through a process that begins with the cooling and sinking of surface waters near the continent. As these waters sink, they become denser and eventually form AABW, filling the deep ocean basins around Antarctica. The dense water flows from the surface to the bottom of the ocean forming turbidity currents. These turbidity currents, dense plumes of water and sediments, flow down submarine conduits, such as Hillary Canyon in the Ross Sea, Antarctica, leaving a sedimentary record in the levees or flanks, called turbidites. The turbidite sequences in sediment cores can reveal information about the frequency and magnitude of these currents, providing insights into the sediment transport processes in deep-marine settings, and for this work, the history of the AABW formation over the last 3.3 Ma. This study will help to understand what are the main controls for AABW formation across different climates in the past, and how we project this into the future climate scenarios. In the second part of the study (Chapter 3), we look at the sedimentary record of a warming event that happened around 56 million years ago. This event, known as the Paleocene-Eocene Thermal Maximum (PETM), involved a significant amount of carbon being released into the air and oceans over thousands of years (150,000 to 200,000). Our focus is IODP Site U1568, located near a submarine hydrothermal vent, and part of a larger drilling transect in the North Atlantic's Modgunn Arch. The vent's unique location provides a crucial perspective for understanding how the system responded to the warming during the Paleocene-Eocene Thermal Maximum (PETM). This warming event was triggered by the release of carbon into the atmosphere, with the vent serving as one of the conduits for this release. To understand this, we studied the grain size and content of the sediment, and compared that with XRF data. Changes in grain size serve as indicators of shifts in the energy of the environment – coarser grains signify a more energetic system. Warmer weather, for instance, can increase precipitation, leading to more erosion and sediment influx into the basin. This influx also brings in more materials from the land, as evidenced by the presence of microfossils and plant fragments. Our discoveries indicate that the sedimentary system responded gradually to the PETM, as reflected in the coarsening of grain size after the PETM's onset. Notably, the transition from a marine to a more terrestrial composition occurred before the change in grain size, aligning more closely with the initiation of the PETM itself.
3

Análise Quantitativa das Massas de Água dos Mares de Ross e Weddell, Antártica / Quantitative Analysis of the Water Masses in Ross and Weddell Seas, Antarctic

Hille, Elizandra 05 March 2013 (has links)
A complexa interação que ocorre entre os processos oceânicos e atmosféricos no Oceano Austral afeta a circulação oceânica global em diferentes camadas. O Mar de Weddell e o Mar de Ross possuem reconhecida importância na formação da Água de Fundo Antártica (AABW). O objetivo principal deste trabalho é caracterizar as massas de água dos Mares de Weddell e Ross, através dos dados mais recentes de reanálise oceânica SODA (Simple Ocean Data Assimilation). Através da técnica de separação de massas de água Análise Multiparamétrica Ótima (AMO) foi possível a identificação de 3 principais massas de água no Mar de Ross: Água Profunda Circumpolar Superior (UCDW), Água Profunda Circumpolar Inferior (LCDW) e Água de Plataforma de Baixa Salinidade (LSSW). A UCDW foi a que apresentou a maior variabilidade, não atingindo a Plataforma de gelo do MR durante os anos de 1950-1974. No Mar de Weddell foi possível a identificação das seguintes massas de água: Água Profunda Cálida (WDW), Água Profunda do Mar de Weddell (WSDW) e Água de Fundo do Mar de Weddell (WSBW). A WDW atingiu valores >70% à 800m. A WSDW possui em seu núcleo valores > 90% entre 2000 e 3500m. A WSBW, apresenta ~100% em profundidades > 4000m. / The complex interaction that occurs between the oceanic and atmospheric processes in the Southern Ocean affects global ocean circulation in different layers. The Weddell and Ross Seas have recognized importance in the formation of Antarctic Bottom Water (AABW). This work aims to characterize the water masses of the Weddell and Ross Seas, using the latest ocean data reanalysis SODA (Simple Ocean Data Assimilation). Through the water masses separation technique, Optimum Multiparameter Analysis (OMP), it was possible to identify three main water masses in Ross Sea: Upper Circumpolar Deep Water (UCDW), Lower Circumpolar Deep Water (LCDW) and Low Salinity Shelf Water (LSSW). UCDW showed the greatest variability, not reaching the Ross Sea Ice Shelf during the years 1950-1974. It was possible to identify the following water masses in Weddell Sea: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). WDW reached values up to 70% in 800m. WSDW has in its core values > 90% between 2000 and 3500m. WSBW presents a contribution up to 100% at depths > 4000m.
4

Variations in past and present ocean circulation assessed with U-series nuclides

Thomas, Alexander Llewellyn January 2006 (has links)
This thesis considers the use of two U-series nuclides – 231 Pa and 230 Th – as proxies for studying ocean circulation. A total of six water-column profiles of 231 Pa, 230 Th, and 232 Th have been measured from two regions of the southwestern Indian Ocean: the Madagascar and Mascarene Basins; and the southeastern continental margin of South Africa. Measurement by MC-ICP-MS of 10 litre water samples is possible for samples with as little as 4 and 2 fg of 231 Pa and 230 Th and yields typical uncertainties of 6% and 14% respectively. These profiles show that the scavenging and advection histories of water masses can affect their 231 Pa concentration, with distinct variations superimposed on a general increase in concentration with depth due to reversible scavenging. A 1D particle scavenging model is used to show that sedimentary (231 Paxs /230 Thxs )0 is most representative of the (231 Pa/230 Th) of the bottom most water mass at any one locality, although in turn this water mass (231 Pa/230 Th) will be dependent not only on its advection and scavenging history but also the 231 Pa and 230 Th concentrations of the overlying water masses during advection. Acknowledgment that sedimentary (231 Paxs /230 Thxs )0 is “set” by the bottommost water mass is important for interpretation of scenarios where changes in depth of circulation, as well as circulation strength, may have occurred. A record of sedimentary (231 Paxs /230 Thxs )0 has been recovered from a 6 m Kasten core from the Mascarene Basin covering the past 140 ka, in order to reconstruct flow of AABW into the basin. The (231 Paxs /230 Thxs )0 measured is below the production ration of 0.093 and shows no significant variation. This indicates that (231 Paxs /230 Thxs )0 is sensitive to changes in particle productivity and circulation at this location and that there has been little or no change in either environmental variable over the last full interglacial-glacial cycle. This finding is in contrast to other ocean basins, particularly the North Atlantic, where large changes in circulation are observed.
5

Análise Quantitativa das Massas de Água dos Mares de Ross e Weddell, Antártica / Quantitative Analysis of the Water Masses in Ross and Weddell Seas, Antarctic

Elizandra Hille 05 March 2013 (has links)
A complexa interação que ocorre entre os processos oceânicos e atmosféricos no Oceano Austral afeta a circulação oceânica global em diferentes camadas. O Mar de Weddell e o Mar de Ross possuem reconhecida importância na formação da Água de Fundo Antártica (AABW). O objetivo principal deste trabalho é caracterizar as massas de água dos Mares de Weddell e Ross, através dos dados mais recentes de reanálise oceânica SODA (Simple Ocean Data Assimilation). Através da técnica de separação de massas de água Análise Multiparamétrica Ótima (AMO) foi possível a identificação de 3 principais massas de água no Mar de Ross: Água Profunda Circumpolar Superior (UCDW), Água Profunda Circumpolar Inferior (LCDW) e Água de Plataforma de Baixa Salinidade (LSSW). A UCDW foi a que apresentou a maior variabilidade, não atingindo a Plataforma de gelo do MR durante os anos de 1950-1974. No Mar de Weddell foi possível a identificação das seguintes massas de água: Água Profunda Cálida (WDW), Água Profunda do Mar de Weddell (WSDW) e Água de Fundo do Mar de Weddell (WSBW). A WDW atingiu valores >70% à 800m. A WSDW possui em seu núcleo valores > 90% entre 2000 e 3500m. A WSBW, apresenta ~100% em profundidades > 4000m. / The complex interaction that occurs between the oceanic and atmospheric processes in the Southern Ocean affects global ocean circulation in different layers. The Weddell and Ross Seas have recognized importance in the formation of Antarctic Bottom Water (AABW). This work aims to characterize the water masses of the Weddell and Ross Seas, using the latest ocean data reanalysis SODA (Simple Ocean Data Assimilation). Through the water masses separation technique, Optimum Multiparameter Analysis (OMP), it was possible to identify three main water masses in Ross Sea: Upper Circumpolar Deep Water (UCDW), Lower Circumpolar Deep Water (LCDW) and Low Salinity Shelf Water (LSSW). UCDW showed the greatest variability, not reaching the Ross Sea Ice Shelf during the years 1950-1974. It was possible to identify the following water masses in Weddell Sea: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). WDW reached values up to 70% in 800m. WSDW has in its core values > 90% between 2000 and 3500m. WSBW presents a contribution up to 100% at depths > 4000m.

Page generated in 0.0722 seconds