Return to search

區間預測及其效率評估 / Interval Forecasting with Efficiency Evaluation

點預測為目前使用最多之預測陳述,其效率評估亦多以最小平方和誤差(minimum of sum of square errors)為主。每日或月的經濟或財金指標預測是點預測最常見的例子。但是隨著區間時間數列真正需求與軟計算(soft computing)科技的發展,區間計算與預測愈來愈受重視。本文提出幾種區間時間數列預測的方法,並研究其效率評估。在第三章,我們定義區間誤差和,並將其對應到實數值,以便用傳統的方法計算。最後我們以影響經濟作物的天氣預測,作實證研究分析。考慮在無參數條件下,幾種預測方法作效率評估與準確性探討。天氣預測是區間預測的例子,建立合適的的區間預測方法與效率評估,對各研究領域將會有莫大的幫助。 / Currently, the most use of forecasts is the point forecasting, whose efficiency evaluations are major in the least squares and error (minimum of sum of square errors). The common examples of the point forecasting are daily or monthly economy index or financial estimation. But along with the real demand of interval time series and the development of soft computation (soft computing), the interval computation and the forecasting are more and more important. This article provides some interval time series forecasting methods, and studies the efficiency evaluation. In chapter 3, we define sum errors of interval and correspond them to the real numbers, so as to compute with traditional way. Finally, we decide to use the weather forecasting which can affect the cash crop to be the empirical study analysis. Consider some forecasting methods under the non-parameter condition to be the efficiency evaluations and the accurate discussion. The weather forecasting is an example of interval forecasting. It will be more helpful of each research area if we establish the appropriate interval forecasting method and the efficiency evaluation.

Identiferoai:union.ndltd.org:CHENGCHI/G0095751015
Creators洪錦峰, Hung,Chin Feng
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language中文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0055 seconds