Cette thèse concerne l'étude de modèles mathématiques et méthodes numériques motivés par la filtration des globules blancs du sang. <br /><br />Dans la première partie, nous définissons des modèles mathématiques qui réprésentent les principaux phénomènes physiques qui entrent en jeu dans le procédé de la filtration.<br /><br />La deuxième partie est dédiée à l'analyse mathématique de systèmes d'équations aux dérivées partielles modélisant le procédé de la filtration. Tout d'abord, nous considérons un système d'équations semi-linéaires de type hyperbolique-parabolique avec une diffusion anisotrope dégénérée. Nous étudions ce problème avec une théorie $L^{1}$; nous considérons en particulier l'existence et l'unicité de solutions faibles ainsi que d'autres propriétés comme le principe du maximum; puis nous établissons la limite quand la constante de réaction devient grande. Nous montrons que le système converge vers une équation non linéaire parabolique-hyperbolique qui généralise le problème de Stefan. Nous étudions également, par des techniques de l'homogénéisation, la filtration au travers de milieux poreux fibrés. Le réseau des fibres étudié est celui utilisé par M. Briane dans le cadre d'une étude sur la conduction thermique des tissus biologiques. Nous dérivons et justifions l'équation de Darcy ainsi que la forme du tenseur de perméabilité pour un tel milieu fibreux. Les résultats théoriques concernant la perméabilité sont illustrés par quelques simulations numériques. Finalement, nous considérons le cas où le diamètre des fibres tend vers zéro. En appliquant des résultats de G. Allaire à notre cas, nous justifions rigoureusement la forme du terme dominant dans les formules de perméabilité efficace utilisées en ingénierie. Ces résultats sont également confirmés par un calcul numérique direct de la perméabilité, dans lequel la petitesse du diamètre des fibres rend nécessaire le recours à des approximations de précision élevée.<br /><br />La définition des méthodes numériques efficaces pour approximer la solution des modèles mathématiques est envisagée dans la troisième partie. Précisément, concernant les équations de Darcy, nous avons utilisé la méthode des éléments finis mixtes hybrides. Pour la résolution de l'équation du transport, nous avons implémenté une méthode numérique utilisant des volumes finis pour la discrétisation du terme convection/réaction associé à une approximation mixte hybride pour la discrétisation du terme dispersif.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011977 |
Date | 11 March 2005 |
Creators | Belhadj, Mohamed |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0026 seconds