• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles approximations numériques pour les équations de Stokes et l'équation Level Set

Malcom, Djenno Ngomanda 14 December 2007 (has links) (PDF)
Ce travail de thèse est consacré à deux thèmes de recherche en Calcul Scientifique liés par l'approximation numérique de problèmes en mécanique des fluides. Le premier thème concerne l'approximation numérique des équations de Stokes, modélisant les écoulements de fluides incompressibles à vitesse faible. Ce thème est présent dans plusieurs travaux en Calcul Scientifique. La discrétisation en temps est réalisée à l'aide de la méthode de projection. La discrétisation en espace utilise la méthode des éléments finis mixtes hybrides qui permet d'imposer de façon exacte la contrainte d'incompressibilité. Cette approche est originale: la méthode des éléments mixtes hybrides est couplée avec une méthode d'éléments finis standards. L'ordre de convergence des deux méthodes est préservé. Le second thème concerne la mise au point de méthodes numériques de type volumes finis pour la résolution de l'équation Level Set. Ces équations interviennent de manière essentielle dans la résolution des problèmes de propagation d'interfaces. Dans cette partie, nous avons développé une nouvelle méthode d'ordre 2 de type MUSCL pour résoudre le système hyperbolique résultant de l'équation Level Set. Nous illustrons ces propriétés par des applications numériques. En particulier nous avons regardé le cas du problème des deux demi-plans pour lequel notre schéma donne une approximation pour le gradient de la fonction Level Set. Par ailleurs, l'ordre de précision attendu est obtenu avec les normes $L_1$ et $L_{\infty}$ pour des fonctions régulières. Pour finir, il est à noter que notre méthode peut être facilement étendue aux problèmes d'Hamilton-Jacobi du premier et du second ordre.
2

Vers une modélisation mathématique de la filtration des globules blancs du sang

Belhadj, Mohamed 11 March 2005 (has links) (PDF)
Cette thèse concerne l'étude de modèles mathématiques et méthodes numériques motivés par la filtration des globules blancs du sang. <br /><br />Dans la première partie, nous définissons des modèles mathématiques qui réprésentent les principaux phénomènes physiques qui entrent en jeu dans le procédé de la filtration.<br /><br />La deuxième partie est dédiée à l'analyse mathématique de systèmes d'équations aux dérivées partielles modélisant le procédé de la filtration. Tout d'abord, nous considérons un système d'équations semi-linéaires de type hyperbolique-parabolique avec une diffusion anisotrope dégénérée. Nous étudions ce problème avec une théorie $L^{1}$; nous considérons en particulier l'existence et l'unicité de solutions faibles ainsi que d'autres propriétés comme le principe du maximum; puis nous établissons la limite quand la constante de réaction devient grande. Nous montrons que le système converge vers une équation non linéaire parabolique-hyperbolique qui généralise le problème de Stefan. Nous étudions également, par des techniques de l'homogénéisation, la filtration au travers de milieux poreux fibrés. Le réseau des fibres étudié est celui utilisé par M. Briane dans le cadre d'une étude sur la conduction thermique des tissus biologiques. Nous dérivons et justifions l'équation de Darcy ainsi que la forme du tenseur de perméabilité pour un tel milieu fibreux. Les résultats théoriques concernant la perméabilité sont illustrés par quelques simulations numériques. Finalement, nous considérons le cas où le diamètre des fibres tend vers zéro. En appliquant des résultats de G. Allaire à notre cas, nous justifions rigoureusement la forme du terme dominant dans les formules de perméabilité efficace utilisées en ingénierie. Ces résultats sont également confirmés par un calcul numérique direct de la perméabilité, dans lequel la petitesse du diamètre des fibres rend nécessaire le recours à des approximations de précision élevée.<br /><br />La définition des méthodes numériques efficaces pour approximer la solution des modèles mathématiques est envisagée dans la troisième partie. Précisément, concernant les équations de Darcy, nous avons utilisé la méthode des éléments finis mixtes hybrides. Pour la résolution de l'équation du transport, nous avons implémenté une méthode numérique utilisant des volumes finis pour la discrétisation du terme convection/réaction associé à une approximation mixte hybride pour la discrétisation du terme dispersif.

Page generated in 0.1101 seconds