• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation numérique d'écoulements multi-fluides sur grille de calcul

Basset, Olivier 21 December 2006 (has links) (PDF)
Cette thèse porte sur le développement de méthodes numériques pour le calcul d'écoulements incompressibles multi-fluides sur grille de calcul, s'inscrivant ainsi dans le cadre du projet MecaGrid.Une étude de la grille MecaGrid met en évidence son caractère hétérogène et ses conséquences. Plusieurs techniques d'optimisation sont présentées afin d'améliorer son utilisation : répartir la masse de calcul de façon adaptée, et privilégier le travail des processeurs vis-à-vis des communications réseaux pénalisantes.Des méthodes numériques sur maillage non structuré composé de tétraèdres sont choisies pour réaliser la simulation directe d'écoulements multi-fluides avec capture d'interface. Nous adoptons une approche unique qui rappelle celle du Multiscale, dans laquelle la condensation d'une fonction Bulle pyramidale est utilisée comme technique universelle de stabilisation.Les équations de Navier-Stokes incompressible sont résolues par une méthode éléments finis mixtes à interpolation P1+/P1. Un schéma temporel d'Euler implicite est appliqué, en association avec un algorithme de Newton pour linéariser le problème.Les interfaces sont capturées par une technique Level Set à interpolation continue P1 qui consiste à résoudre une équation de transport stabilisée par la condensation d'une Bulle (Residual-Free Bubbles). Le couplage avec une équation d'Hamilton-Jacobi permet de réinitialiser la fonction Level Set au court de son transport. La comparaison avec une méthode Galerkin discontinue proche du Volume of Fluid montre que le Level Set se distingue par sa simplicité et l'absence de diffusion numérique.Enfin, les simulations numériques sont validées par plusieurs cas test reconnus.
2

Etude asymptotique et numérique d'écoulements de fluides non-newtoniens dans des structures tubulaires minces / Asymptotical and numerical analysis of a viscous non newtonian fluid flow in thin tube structures

Fares, Roula 21 November 2011 (has links)
Afin de modéliser le flux sanguin dans les vaisseaux, l’équation de Stokes avec une viscosité variable est considérée dans une structure tubulaire mince, c’est à dire, dans une union de rectangles minces avec des hauteurs d’ordre ε et des bases d’ordre 1. Un développement asymptotique de la solution est construit. Dans le cas des perturbations aléatoires de la viscosité constante, nous prouvons que le premier terme de la vitesse est déterministe, alors que pour la pression, il est aléatoire, mais les espérances de la pression satisfont l’équation déterministe de Darcy. Les estimations pour la différence entre la solution exacte et son approximation asymptotique sont prouvées. Enfin, nous donnons quelques résultats numériques. Nous étendons les résultats à une structure tubulaire mince composée de deux rectangles minces avec des parois élastiques qui sont reliés par un domaine dont les parois sont rigides. Après une approche variationnelle du problème qui nous donne des résultats d’existence, d’unicité, de régularité, et certaines estimations, a priori, nous construisons une solution asymptotique. Nous présentons et résolvons les problèmes de tous les termes du développement asymptotique. Pour deux cas différents, nous décrivons l’ordre des étapes de résolution de l’algorithme du problème et nous construisons le terme principal du développement asymptotique. Et enfin, nous présentons une analyse variationnelle et asymptotique pour un cas plus général où la viscosité dépend du tenseur des déformations dans un canal mince. Par le biais des estimations a priori, nous justifions nos constructions asymptotiques, par l’obtention d’une petite erreur entre les solutions exactes et asymptotiques / In order to model the blood flow through vessels, the Stokes equation with the nonconstant viscosity is considered in a thin tube structure, i.e., in a connected union of thin rectangles with heights of order ε and bases of order 1 with smoothened boundary. An asymptotic expansion of the solution is constructed. In the case of random perturbations of the constant viscosity, we prove that the leading term for the velocity is deterministic, while for the pressure it is random, but the expectations of the pressure satisfies the deterministic Darcy equation. Estimates for the difference between the exact solution and its asymptotic approximation are proved. Finally, we give some numerical results. We extend the results for a thin tube structure composed by two thin rectangles with lateral elastic boundaries which are connected by a domain with rigid boundaries. After a variational approach of the problem which gives us existence, uniqueness, regularity results and some a priori estimates, we construct an asymptotic solution. We present and solve the problems for all the terms of the asymptotic expansion. For two different cases, we describe the order of steps of the algorithm of solving the problem and we construct the main term of the asymptotic expansion. And finally, we present a variational and an asymptotic analysis for a more general case where the viscosity depends on the infinitesimal strain tensor in a thin channel. By means of the a priori estimates, we justify our asymptotic constructions, by obtaining a small error between the exact and the asymptotic solutions
3

Nouvelles approximations numériques pour les équations de Stokes et l'équation Level Set

Malcom, Djenno Ngomanda 14 December 2007 (has links) (PDF)
Ce travail de thèse est consacré à deux thèmes de recherche en Calcul Scientifique liés par l'approximation numérique de problèmes en mécanique des fluides. Le premier thème concerne l'approximation numérique des équations de Stokes, modélisant les écoulements de fluides incompressibles à vitesse faible. Ce thème est présent dans plusieurs travaux en Calcul Scientifique. La discrétisation en temps est réalisée à l'aide de la méthode de projection. La discrétisation en espace utilise la méthode des éléments finis mixtes hybrides qui permet d'imposer de façon exacte la contrainte d'incompressibilité. Cette approche est originale: la méthode des éléments mixtes hybrides est couplée avec une méthode d'éléments finis standards. L'ordre de convergence des deux méthodes est préservé. Le second thème concerne la mise au point de méthodes numériques de type volumes finis pour la résolution de l'équation Level Set. Ces équations interviennent de manière essentielle dans la résolution des problèmes de propagation d'interfaces. Dans cette partie, nous avons développé une nouvelle méthode d'ordre 2 de type MUSCL pour résoudre le système hyperbolique résultant de l'équation Level Set. Nous illustrons ces propriétés par des applications numériques. En particulier nous avons regardé le cas du problème des deux demi-plans pour lequel notre schéma donne une approximation pour le gradient de la fonction Level Set. Par ailleurs, l'ordre de précision attendu est obtenu avec les normes $L_1$ et $L_{\infty}$ pour des fonctions régulières. Pour finir, il est à noter que notre méthode peut être facilement étendue aux problèmes d'Hamilton-Jacobi du premier et du second ordre.
4

Etude asymptotique et numérique d'écoulements de fluides non-newtoniens dans des structures tubulaires minces

Fares, Roula 21 November 2011 (has links) (PDF)
Afin de modéliser le flux sanguin dans les vaisseaux, l'équation de Stokes avec une viscosité variable est considérée dans une structure tubulaire mince, c'est à dire, dans une union de rectangles minces avec des hauteurs d'ordre ε et des bases d'ordre 1. Un développement asymptotique de la solution est construit. Dans le cas des perturbations aléatoires de la viscosité constante, nous prouvons que le premier terme de la vitesse est déterministe, alors que pour la pression, il est aléatoire, mais les espérances de la pression satisfont l'équation déterministe de Darcy. Les estimations pour la différence entre la solution exacte et son approximation asymptotique sont prouvées. Enfin, nous donnons quelques résultats numériques. Nous étendons les résultats à une structure tubulaire mince composée de deux rectangles minces avec des parois élastiques qui sont reliés par un domaine dont les parois sont rigides. Après une approche variationnelle du problème qui nous donne des résultats d'existence, d'unicité, de régularité, et certaines estimations, a priori, nous construisons une solution asymptotique. Nous présentons et résolvons les problèmes de tous les termes du développement asymptotique. Pour deux cas différents, nous décrivons l'ordre des étapes de résolution de l'algorithme du problème et nous construisons le terme principal du développement asymptotique. Et enfin, nous présentons une analyse variationnelle et asymptotique pour un cas plus général où la viscosité dépend du tenseur des déformations dans un canal mince. Par le biais des estimations a priori, nous justifions nos constructions asymptotiques, par l'obtention d'une petite erreur entre les solutions exactes et asymptotiques
5

Rayleigh-Bénard convection: bounds on the Nusselt number

Nobili, Camilla 11 September 2016 (has links)
We examine the Rayleigh–Bénard convection as modelled by the Boussinesq equation. Our aim is at deriving bounds for the heat enhancement factor in the vertical direction, the Nusselt number, which reproduce physical scalings. In the first part of the dissertation, we examine the the simpler model when the acceleration of the fluid is neglected (Pr=∞) and prove the non-optimality of the temperature background field method by showing a lower bound for the Nusselt number associated to it. In the second part we consider the full model (Pr<∞) and we prove a new upper bound which improve the existing ones (for large Pr numbers) and catches a transition at Pr~Ra^(1/3).
6

High-Resolution Computational Fluid Dynamics using Enriched Finite Elements

Shilt, Troy P. January 2021 (has links)
No description available.

Page generated in 0.1202 seconds