• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles approximations numériques pour les équations de Stokes et l'équation Level Set

Malcom, Djenno Ngomanda 14 December 2007 (has links) (PDF)
Ce travail de thèse est consacré à deux thèmes de recherche en Calcul Scientifique liés par l'approximation numérique de problèmes en mécanique des fluides. Le premier thème concerne l'approximation numérique des équations de Stokes, modélisant les écoulements de fluides incompressibles à vitesse faible. Ce thème est présent dans plusieurs travaux en Calcul Scientifique. La discrétisation en temps est réalisée à l'aide de la méthode de projection. La discrétisation en espace utilise la méthode des éléments finis mixtes hybrides qui permet d'imposer de façon exacte la contrainte d'incompressibilité. Cette approche est originale: la méthode des éléments mixtes hybrides est couplée avec une méthode d'éléments finis standards. L'ordre de convergence des deux méthodes est préservé. Le second thème concerne la mise au point de méthodes numériques de type volumes finis pour la résolution de l'équation Level Set. Ces équations interviennent de manière essentielle dans la résolution des problèmes de propagation d'interfaces. Dans cette partie, nous avons développé une nouvelle méthode d'ordre 2 de type MUSCL pour résoudre le système hyperbolique résultant de l'équation Level Set. Nous illustrons ces propriétés par des applications numériques. En particulier nous avons regardé le cas du problème des deux demi-plans pour lequel notre schéma donne une approximation pour le gradient de la fonction Level Set. Par ailleurs, l'ordre de précision attendu est obtenu avec les normes $L_1$ et $L_{\infty}$ pour des fonctions régulières. Pour finir, il est à noter que notre méthode peut être facilement étendue aux problèmes d'Hamilton-Jacobi du premier et du second ordre.
2

Développement d’un schéma aux volumes finis centré lagrangien pour la résolution 3D des équations de l’hydrodynamique et de l’hyperélasticité / Development of a 3D cell-centered Lagrangian scheme for the numerical modeling of the gas dynamics and hyperelasticity systems

Georges, Gabriel 19 September 2016 (has links)
La Physique des Hautes Densités d’Énergies (HEDP) est caractérisée par desécoulements multi-matériaux fortement compressibles. Le domaine contenant l’écoulementsubit de grandes variations de taille et est le siège d’ondes de chocs et dedétente intenses. La représentation Lagrangienne est bien adaptée à la descriptionde ce type d’écoulements. Elle permet en effet une très bonne description deschocs ainsi qu’un suivit naturel des interfaces multi-matériaux et des surfaces libres.En particulier, les schémas Volumes Finis centrés Lagrangiens GLACE (GodunovtypeLAgrangian scheme Conservative for total Energy) et EUCCLHYD (ExplicitUnstructured Cell-Centered Lagrangian HYDrodynamics) ont prouvé leur efficacitépour la modélisation des équations de la dynamique des gaz ainsi que de l’élastoplasticité.Le travail de cette thèse s’inscrit dans la continuité des travaux de Maireet Nkonga [JCP, 2009] pour la modélisation de l’hydrodynamique et des travauxde Kluth et Després [JCP, 2010] pour l’hyperelasticité. Plus précisément, cettethèse propose le développement de méthodes robustes et précises pour l’extension3D du schéma EUCCLHYD avec une extension d’ordre deux basée sur les méthodesMUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) et GRP(Generalized Riemann Problem). Une attention particulière est portée sur la préservationdes symétries et la monotonie des solutions. La robustesse et la précision duschéma seront validées sur de nombreux cas tests Lagrangiens dont l’extension 3Dest particulièrement difficile. / High Energy Density Physics (HEDP) flows are multi-material flows characterizedby strong shock waves and large changes in the domain shape due to rarefactionwaves. Numerical schemes based on the Lagrangian formalism are good candidatesto model this kind of flows since the computational grid follows the fluid motion.This provides accurate results around the shocks as well as a natural tracking ofmulti-material interfaces and free-surfaces. In particular, cell-centered Finite VolumeLagrangian schemes such as GLACE (Godunov-type LAgrangian scheme Conservativefor total Energy) and EUCCLHYD (Explicit Unstructured Cell-CenteredLagrangian HYDrodynamics) provide good results on both the modeling of gas dynamicsand elastic-plastic equations. The work produced during this PhD thesisis in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamicpart and the work of Kluth and Després [JCP, 2010] for the hyperelasticitypart. More precisely, the aim of this thesis is to develop robust and accurate methodsfor the 3D extension of the EUCCLHYD scheme with a second-order extensionbased on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)and GRP (Generalized Riemann Problem) procedures. A particular care is taken onthe preservation of symmetries and the monotonicity of the solutions. The schemerobustness and accuracy are assessed on numerous Lagrangian test cases for whichthe 3D extensions are very challenging.
3

Couplage entre modèles diphasiques à « phases séparées » et à « phase dispersée » pour la simulation de l’atomisation primaire en combustion cryotechnique / Coupling between separated and dispersed two-phase flow models for the simulation of primary atomization in cryogenic combustion

Le Touze, Clément 03 December 2015 (has links)
Les écoulements diphasiques jouent un rôle prépondérant dans les moteurs-fusées à ergols liquides cryogéniques, équipant par exemple les lanceurs de la famille Ariane. L'étude expérimentale de tels engins propulsifs étant complexe et onéreuse, disposer d'outils numériques à même de simuler fidèlement leur fonctionnement se révèle être un objectif aussi important qu'ambitieux. La difficulté majeure réside dans le caractère fortement multi-échelles du problème, si bien qu’aucune approche numérique existante n'est capable à elle seule de décrire parfaitement l'ensemble des échelles liquides. Partant de ce constat, les travaux présentés dans cette thèse visent à mettre en place une stratégie de couplage entre des modèles bien adaptés aux différentes topologies d'écoulement diphasique, et ce dans le cadre de la plateforme logicielle multi-physique CEDRE développée par l'ONERA. La démarche adoptée consiste précisément à coupler un modèle à interface diffuse de type ``4 équations'' pour les zones à phases séparées, et un modèle cinétique eulérien pour la phase dispersée, rendant ainsi possible la description de l’atomisation primaire. Par ailleurs, les conditions sévères qui règnent dans les moteurs cryotechniques, où de forts gradients de température, vitesse et densité sont rencontrés, mettent à l'épreuve la robustesse des méthodes numériques. Une nouvelle méthode MUSCL multipente pour maillages non structurés généraux a ainsi été développée, permettant d’améliorer la robustesse et la précision des schémas de discrétisation spatiale. L’ensemble de la stratégie de couplage est finalement appliquée à la simulation du banc Mascotte de l'ONERA pour la combustion cryotechnique. / Two-phase flows play a significant role for the proper functioning of cryogenic liquid-propellant rocketengines, such as those that equip the launchers of the Ariane family. Since the experimental investigationof such propulsion devices is complex and expensive, developing numerical tools able to accuratelysimulate their functioning, is a crucial but nonetheless ambitious objective. The major difficulty is due tothe multiscale nature of the problem, as a result of which there is currently no numerical approach ableto perfectly describe all the liquid scales on its own. Based on this observation the work presented in thisthesis aims at setting up a coupling strategy between models well-adapted to each two-phase flowtopology, in the framework of the ONERA’s multiphysics CEDRE software. The approach adoptedprecisely consists in coupling a 4-equation diffuse interface model for the separated phases and aeulerian kinetic model for the dispersed phase, thus making it possible to describe primary atomization.Besides, the harsh conditions within cryogenic rocket engines, where large temperature, velocity anddensity gradients are encountered, severely challenge the robustness of numerical methods. A newmultislope MUSCL method for general unstructured meshes is thus developed in order to improve therobustness and accuracy of space discretization schemes. The whole coupling strategy is finally appliedto the numerical simulation of the ONERA’s Mascotte test bench for cryogenic combustion research.

Page generated in 0.0468 seconds