A small-scale wave energy converter was designed and built for teaching and academic purposes to be used at The Division for Electricity, in the Ångström Laboratory at Uppsala University. The design of the power take-off (PTO) makes use of magnets passing through a copper coil for electricity generation. The magnets are attached by a string to the floating buoy in the small-scale wave tank which leads to a joint oscillation. Design parameters are executed using COMSOL Multiphysics which illustrates the total voltage output generated as well as the total magnetic field. Simulations and calculations in MATLAB were performed to extract the expected damping coefficient and plots of the buoy position compared to the wave amplitude. Lastly, a PTO prototype were built and compared with the simulations. The PTO shows electricity generation with the aid of a voltmeter showcasing the voltage. Additional information on future improvements to further aid teaching and academic understanding of wave energy converter are mentioned in the final section of this study.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-507735 |
Date | January 2023 |
Creators | Asseh, Samir |
Publisher | Uppsala universitet, Elektricitetslära |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC E, 1654-7616 ; 23010 |
Page generated in 0.0028 seconds