• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>NUMERICAL INVESTIGATION OF AN OCEAN BRICK SYSTEM</b>

Hari Bollineni (18496188) 03 May 2024 (has links)
<p dir="ltr">Numerical investigation of Ocean Brick system is carried out in nonlinear depth NWT, Modified Ocean Brick is proposed to increase the effectiveness of the original Brick. Further numerical simulations are conducted on modified brick.</p>
2

A Laboratory Study of the Transfer of Momentum Across the Air-Sea Interface in Strong Winds

Savelyev, Ivan 24 July 2009 (has links)
A quantitative description of wind-wave and wind-current momentum transfer in high wind conditions is currently unresolved, mainly due to the severe character of the problem. It is, however, necessary for accurate wave models, storm and hurricane forecasting, and atmosphere-ocean model coupling. In this research, strongly forced wind-wave conditions were simulated in a laboratory tank. On the air side, a static pressure probe mounted on a vertical wave follower measured wave-induced airflow pressure fluctuations in close proximity to the surface. Vertical profiles of wave-induced pressure fluctuations were resolved and wave phase dependent features, such as airflow separation, identified. Based on the pressure measurements, wind-wave momentum fluxes were obtained. The dependence of the spectral wave growth function on wind forcing, wave steepness, and wave crest sharpness was also investigated. The bulk air-sea momentum fluxes were estimated using the "total budget" experimental technique. It provided information on the contribution of a wind-wave flux induced by a single wave to the total air-sea momentum flux. The percentile contribution of wind-wave momentum flux into one wave was found to be dependent on the wave's steepness. An arbitrary change in steepness, however, was found to modify the wave field in such a way that it had little effect on the total wind stress. To complement wind stress measurements velocity profiles in the water were measured using Particle Image Velocimetry technique. Mean current, turbulent stress, turbulent kinetic energy and turbulent dissipation rate vertical profiles were studied as a function of wind speed. Together with wave spectrum evolution measurements they form a complete empirical description of momentum fluxes in the laboratory tank. The results provide a detailed empirical view on airflow pressure fluctuations over a wavy surface, on total wind stress, and on the velocity response in the water. A new wave growth parameterization with wind forcing range extended into storm conditions is the most significant stand alone result of this work. Combined with the near surface vertical profiles, these empirical data also serve as a test bed for coupled air-sea numerical models.
3

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
4

Dynamic analysis of a floating barge with a liquid container

Feng, Chih-ting 27 May 2010 (has links)
This study is to develop a 2D fully nonlinear numerical wave tank used to investigate the wave-induced dynamic properties of a dual pontoon floating structure (DPFS) with a liquid container on the top. The nonlinear numerical wave tank, developed based on the velocity potential function and the boundary element method (BEM), is to simulate dynamic properties including sway, heave, roll, and tension response. In addition, a physical model of the dual floating pontoon is tested in a hydrodynamic wave tank to validate the numerical model for simulation of wave and structure interaction. In the numerical model, a boundary integral equation method (BIEM) with linear element scheme is applied to establish a 2D fully nonlinear numerical wave tank (NWT). The nonlinear free surface condition is treated by combining the Mixed Eulerian and Lagrangian method (MEL), the fourth-order Runge-Kutta method (RK4) and a cubic spline scheme. The second-order Stokes wave theory is used to generate the velocity flux on the input boundary. Numerical damping zones are deployed at both ends of the NWT to dissipate or absorb the transmitted and reflected waves. Acceleration potential method and modal decomposition method are adopted to solve the unsteady potential functions £X1,t and £X2,t, while the system of motion equation is established according to Newton's 2nd law. Finally, the RK4 is applied to predict the motion of the platform, and the variation of free surface. As for the hydrodynamic laboratory model test, an image process scheme is applied to trace the floating structure motion and the variation of water surface inside the sloshing tank, while the mooring tension is measured by a load cell and stored in a data logger. The comparisons of numerical simulations and experimental data indicate that the numerical predictions are larger than measurements especially near the resonance frequency. This discrepancy is probably due to the fluid viscous effect. To overcome this problem and maintain the calculation efficiency, an uncoupled damping coefficient obtained through a damping ratio (£a=C/Ccr=0.02) is incorporated into the vibration system. Results reveal that responses of body motion near the resonant frequencies of each mode have significantly reduced and close to the measurements. Therefore, the suitable value of the damping ratio for the floating platform is £a=0.02. Then the numerical model with a damping ratio is applied to investigate the dynamic properties of the floating platform for different arrangements, including different mooring angle, spring constant, spacing, and the liquid container. Results demonstrate that the resonant frequency of each mode, responses of body motion and mooring tensions change along with the settings. As a whole, the platform with smaller mooring angle, longer spacing between the pontoons, higher water depth and wider width of the liquid container has relatively stable body motions and less mooring tension. Finally, the comparisons of the effects of random and regular waves on the floating structure illustrate that the variation of water surface in the liquid container is much severe in random waves than in regular waves such that the interaction between liquid and floating structure is more chaotic and thus reduces the amplitude of each response mode. As a result, the mooring tensions for random waves become much gentler than the regular waves. Key words: Boundary integral equation method; fully nonlinear numerical wave tank; dual pontoon floating structure
5

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
6

Study on the Floating Platform for Cage Aquaculture

Tang, Hung-jie 23 December 2008 (has links)
This paper is to investigate the wave-induced dynamic properties of the floating platform for cage aquaculture. Considering the calculation efficiency and its applicability, this problem is simplified by: (1) assuming the flow field is inviscid, incompressible and irrotational; (2) the form drag and inertia drag on the fish net is calculated by the modified Morison equation (or Morison type equation of relative motion), including the material and geometric properties; (3) the moorings is treated as a symmetric linear spring system and the influence of hydrodynamic forces on the mooring lines is neglected; and (4) the net-volume is assumed as un-deformable to avoid the inversely prolonging computing time because the mass of fish net with is too light comparing with the mass of floating platform and cause the marching time step tremendously small to reach the steady-state condition which may lead to larger numerical errors (e.g. truncation errors) in computation. The BIEM with linear element scheme is applied to establish a 2D fully nonlinear numerical wave tank (NWT). The nonlinear free surface condition is treated by combining the Mixed Eulerian and Lagrangian method (MEL), the fourth-order Runge-Kutta method (RK4) and the cubic spline scheme. The second-order Stokes wave theory is adopted to give the velocity on the input boundary. Numerical damping zones are deployed at both ends of the NWT to dissipate or absorb the transmitted and reflected wave energy. The velocity and acceleration fields should be solved simultaneously in order to obtain the wave-induced dynamic property of the floating platform. Thus, both the acceleration potential method and modal decomposition method are adopted to solve the wave forces on the floating body, while the wave forces on the fish net are calculated by the modified Morison equation. According to Newton¡¦s second law, the total forces on the gravity center of the floating platform form the equation of motion. Finally, the RK4 is applied to predict the displacement and velocity of the platform. Firstly, the NWT is validated by comparing the wave elevation, internal velocity and acceleration with those from the second-order Stokes wave theory. Moreover, the numerical damping zone is suitable for long time simulation with a wide range of wave depth. The simulated results on wave-body interactions of fixed or freely floating body also indicate good agreement with those of other published results. Secondly, in the case of the interaction of waves and the floating platform, the simulated results show well agreement with experimental data, except at the vicinity of resonant frequency of roll and heave motions. This discrepancy is due to the fluid viscous effect. To overcome this problem and maintain the calculation efficiency, an uncoupled damping coefficient obtained by a damping ratio (£i=0.1 ) is incorporated into the vibration system. Results reveal that responses of body motion near the resonant frequencies of each mode have significant reduction and close to the experimental data. Moreover, the results are also consistent well with experiments in different wave height, mooring angle, water depth either with or without fish net. Therefore, the suitable value of the damping ratio for the floating platform is £i=0.1. Finally, the present model is applied to investigate the dynamic properties of the floating platform under different draft, width, spacing, spring constant, mooring angle and depth of fish net. Results reveal that the resonant frequency and response of body motion, mooring force, reflection and transmission coefficients and wave energy will be changed. According to the resonant response, the platform with shallower draft, larger width, longer spacing between two pontoons, smaller spring constants, or deeper depth of fish net has more stable body motions and smaller mooring forces. Irregular wave cases are presented to illustrate the relationship with the regular wave cases. Results indicate that the dynamic responses of body motion and the reflection coefficient in irregular waves have similar trend with regular waves. However, in the irregular wave cases, the resonant frequency is moved to the higher frequency. Similarly, resonant response function is smaller but wider, which is due to the energy distribution in the wave spectrum.
7

Designing of One Directional Wave Tank

Ringe, Shivansh January 2020 (has links)
Uppsala University wants to make a wave tank which can be used for experiment and education purpose. The project's aim is to get design parameters required to make a wave tank, design the wave tank, to do analysis on wave parameters taken from results and analysis of material which can be used to construct it.  This project is an extension of the project called Numerical Wave Tank Design in which a literature study on existing wave research facilities was done [1]. The data from this project is used to get the dimensions of the wave tank. A study on hydrodynamics and wave theory is done to understand flow motion and wave generation.   Ansys Fluent is used for Computational Fluid Dynamics (CFD). The software is used to test the wave tank with different wave absorber and observe if a good quality wave with a minimal reflection can be generated in the wave tank of chosen dimensions. Four models were created for testing wave absorber of different shapes. The setup for all the models was kept the same for comparison purposes. Waves generated from CFD were later compared with the theoretical waves obtained from wave theory. The next part was to model the wave tank in Computer-Aided Design (CAD) software, SolidWorks. The stress and strain analysis was done on the walls and support beam of the wave tank to know if the structure can sustain the water when fully filled. After creating static simulation different scenarios were performed on the beam and stand of the wave tank. The design study on these parts was compared to see which case provides a more optimal solution. It was found out that wave absorber having an elevation of 18.4 degrees, i.e., 1:3 slope provides the highest wave height for the given parameter and dimensions of the wave tank. In wave analysis, it was seen that wave height is proportional to the stroke length, water depth is proportional to wave height and time period is inversely proportional to the wave height. Cast stainless steel is used in a wave tank as it is cheap, reliable and robust. It was found out that the support beam 0.015 m thick is enough, although it can be increased to 0.02 m. In the design study of the wave tank stand, it was found out that a leg distance of 0.78 m and a leg width of 0.06 m is sufficient to withstand the weight of the wave tank.
8

Assessing The Effectiveness Of Living Shoreline Restoration And Quantifying Wave Attenuation In Mosquito Lagoon, Florida

Manis, Jennifer 01 January 2013 (has links)
Coastal counties make up only 17% of the land area in the continental United States, yet 53% of the nation’s population resides in these locations. With sea level rise, erosion, and human disturbances all effecting coastal areas, researchers are working to find strategies to protect and stabilize current and future shorelines. In order to maintain shoreline stability while maintaining intertidal habitat, multipurpose living shorelines have been developed to mimic natural shoreline assemblages while preventing erosion. This project determined the effectiveness of a living shoreline stabilization containing Crassostrea virginica (eastern oyster) and Spartina alterniflora (smooth cordgrass) in the field and through controlled wave tank experiments. First, fringing oyster reefs constructed of stabilized oyster shell and smooth cordgrass plugs were placed along three eroding shoreline areas (shell middens) within Canaveral National Seashore (CANA), New Smyrna Beach, FL. For each shell midden site, four treatments (bare shoreline control, oyster shell only, S. alterniflora only, and oyster shell + S. alterniflora) were tested in replicate 3.5 x 3.5 meter areas in the lower and middle intertidal zones. Each treatment was replicated five times at each site; erosion stakes within each replicate allowed measurement of changes in sedimentation. After one year in the field, the living shoreline treatments that contained oyster shells (oyster shell only and oyster shell + S. alterniflora) vertically accreted on average 4.9 cm of sediment at two of the sites, and an average of 2.9 cm of sediment at the third, while the controls lost an average of 0.5 cm of sediment. S. alterniflora did not significantly contribute to the accretion at any site due to seagrass wrack covering and killing plants within one month of deployment. Next, the reduction in wave energy caused by these living shoreline stabilization techniques relative to bare sediment (control) was quantified. The energy reduction immediately after deployment, and the change in energy reduction when S. alterniflora had been allowed to grow for one year, and the stabilized shell was able to recruit oysters for one year was tested. Laboratory experiments were conducted in a nine-meter long wave tank using capacitance wave gauges to ultimately measure changes in wave height before and after treatments. Wave energy was calculated for each newly deployed and one-year old shoreline stabilization treatment. Boat wake characteristics from CANA shorelines were measured in the field and used as inputs to drive the physical modeling. Likewise, in the wave tank, the topography adjacent to the shell midden sites was measured and replicated. Oyster shell plus S. alterniflora attenuated significantly more wave energy than either the shells or plants alone. Also, one-year old treatments attenuated significantly more energy than the newly deployed treatments. The combination of one-year old S. alterniflora plus live oysters reduced 67% of the wave energy. With the information gathered from both the field and wave experiments, CANA chose to utilize living shorelines to stabilize three shell middens within the park. Oyster shell, marsh grass and two types of mangroves (Rhizophora mangle, Avicennia germinans) were deployed on the intertidal zones of the eroding middens. Significant accretion occurred at all middens. Two sites (Castle Windy and Garver Island) vertically accreted an average 2.3 cm of sediment after nine months, and six months respectively, and the other site (Hong Kong) received on average 1.6 cm of sediment after six months. All control areas (no stabilization) experienced sediment loss, with erosion up to 5.01 cm at Hong Kong. Plant survival was low ( < 20%) at Castle Windy and Garver Island, while Hong Kong had moderate survival (48-65%). Of the surviving marsh iv grass and mangroves on the three sites, almost all ( > 85%) had documented growth in the form of increased height or the production on new shoots. Landowners facing shoreline erosion issues, including park managers at CANA, can use this information in the future to create effective shoreline stabilization protocols. Even though the techniques will vary from location to location, the overall goal of wave attenuation while maintaining shoreline habitat remains. As the research associated with the effectiveness of living shorelines increases, we hope to see more landowners and land managers utilize this form of soft stabilization to armor shorelines.
9

Design, Analysis and Testing of a Self-reactive Wave Energy Point Absorber with Mechanical Power Take-off

Li, Xiaofan 06 November 2020 (has links)
Ocean wave as a renewable energy source possesses great potential for solving the world energy crisis and benefit human beings. The total theoretical potential wave power on the ocean-facing coastlines of the world is around 30,000 TWh, although cannot all be adopted for generating electricity, the amount of the power can be absorbed still can occupy a large portion of the world's total energy consumption. However, multiple reasons have stopped the ocean wave energy from being widely adopted, and among those reasons, the most important one is immature of the Power Take-off (PTO) technology. In this dissertation, a self-reactive two-body wave energy point absorber that is embedded with a novel PTO using the unique mechanism of Mechanical Motion Rectifier (MMR) is investigated through design, analysis and testing to improve the energy harvesting efficiency and the reliability of the PTO. The MMR mechanism can transfer the reciprocated bi-directional movement of the ocean wave into unidirectional rotation of the generator. As a result, this mechanism brings in two advantages towards the PTO. The first advantage it possess is that the alternating stress of the PTO is changed into normal stress, hence the reliability of the components are expected to be improved significantly. The other advantage it brings in is a unique phenomenon of engagement and disengagement during the operation, which lead to a piecewise nonlinear dynamic property of the PTO. This nonlinearity of the PTO can contribute to an expanded frequency domain bandwidth and better efficiency, which are verified through both numerical simulation and in-lab experiment. During the in-lab test, the prototyped PTO achieved energy transfer efficiency as high as 81.2%, and over 40% of efficiency improvement compared with the traditional non-MMR PTO under low-speed condition, proving the previously proposed advantage. Through a more comprehensive study, the MMR PTO is further characterized and a refined dynamic model. The refined model can accurately predict the dynamic response of the PTO. The major factors that can influence the performance of the MMR PTO, which are the inertia of the PTO, the damping coefficient, and the excitation frequency, are explored through analysis and experiment comprehensively. The results show that the increase on the inertia of the PTO and excitation frequency, and decrease on the damping coefficient can lead to a longer disengagement of the PTO and can be expressed analytically. Besides the research on the PTO, the body structure of the point absorber is analyzed. Due to the low-frequency of the ocean wave excitation, usually a very large body dimension for the floating buoy of the point absorber is desired to match with that frequency. To solve this issue, a self-reactive two-body structure is designed where an additional frequency between the two interactive bodies are added to match the ocean wave frequency by adopting an additional reactive submerged body. The self-reactive two-body structure is tested in a wave to compare with the single body design. The results show that the two-body structure can successfully achieve the frequency matching function, and it can improve more than 50% of total power absorption compared with the single body design. / Doctor of Philosophy / Ocean wave as a renewable energy source possesses great potential for solving the world energy crisis and benefit human beings. The total theoretical potential wave power on the ocean-facing coastlines of the world is around 30,000 TWh, although impossible to be all transferred into electricity, the amount of the power can be absorbed still can cover a large portion of the world's total energy consumption. However, multiple reasons have stopped the ocean wave energy from being widely adopted, and among those reasons, the most important one is immature of the Power Take-off (PTO) technology. In this dissertation, a novel two body wave energy converter with a PTO using the unique mechanism of Mechanical Motion Rectifier (MMR) is investigated through design, analysis, and testing. To improve the energy harvesting efficiency and the reliability of the PTO, the dissertation induced a mechanical PTO that uses MMR mechanism which can transfer the reciprocated bi-directional movement of the ocean wave into unidirectional rotation of the generator. This mechanism brings in a unique phenomenon of engagement and disengagement and a piecewise nonlinear dynamic property into the PTO. Through a comprehensive study, the MMR PTO is further characterized and a refined dynamic model that can accurately predict the dynamic response of the PTO is established. The major factors that can influence the performance of the MMR PTO are explored and discussed both analytically and experimentally. Moreover, as it has been theoretically hypothesis that using a two-body structure for designing the point absorbers can help it to achieve a frequency tuning effect for it to better match with the excitation frequency of the ocean wave, it lacks experimental verification. In this dissertation, a scaled two-body point absorber prototype is developed and put into a wave tank to compare with the single body structure. The test results show that through the use of two-body structure and by designing the mass ratio between the two bodies properly, the point absorber can successfully match the excitation frequency of the wave. The highest power capture width ratio (CWR) achieved during the test is 58.7%, which exceeds the results of similar prototypes, proving the advantage of the proposed design.
10

Offshore Floating Platforms : Analysis of a solution for motion mitigation

Rodriguez Marijuan, Alberto January 2017 (has links)
Recent events regarding energy policies throughout the globe and advances in technology are making offshore wind farms become a reality. Most offshore wind farms are still, however, built close to land masses, and need to be rigidly attached to the seabed in one way or another. In many countries, both public and private entities are developing new concepts of floating platforms to overcome the thirty to thirty-five-metre depth limit. Some of these new platforms use and adapt previous Oil and Gas platform concepts, while others are built up from scratch. This Master Thesis covers a hydrodynamic and structural analysis of a new concrete floating platform concept developed for medium to deep waters. This work is based on data from experimental model-scale tests performed in a wave tank and from numerical models using linear potential theory, limited here only to regular wave trains. The study focused on the behavior of the heave plates attached to the platform: test data was analyzed in order to find indicators of the largest dynamic pressures on the plates when only motion data was available, and the structural behavior of the plates was studied under different static pressure distributions using a commercial Finite Element Method software. The results from these analyses show that the normal accelerations of the plates -assumed rigid- strongly correlate with the dynamic pressures measured; and that the general structural behavior of the plate, in terms of deformations and bending moments, is well captured when the hydrodynamic load distribution is simplified into a uniformly distributed load of the same magnitude. The results obtained will help reduce the computational effort currently needed in the design of these floating structures, especially at some stages, when numerous scenarios, load cases and combinations need to be studied.

Page generated in 0.1397 seconds