Return to search

Electroplating and Machining of Silicon Carbide Wafers

Silicon carbide has many properties that make it a promising and desirable material for diverse applications. One such application for silicon carbide wafers is as a transparent cryogenic probe card. This thesis briefly describes the design of a probe card based on a silicon carbide wafer substrate. It includes a description of electroplating fundamentals and demonstrates the feasibility of electroplating copper onto a wafer for the formation of bond pads between the substrate and external PCB ring. The process for electroplating copper with good adhesion and quality based on metal alloy formation, current control, and materials selection is outlined. Results of this process are also presented. This work also demonstrates the ability to machine silicon carbide using electrical discharge machining, abrasive water jet machining, and diamond bit milling, proving diamond grinding to be the most versatile of the described methods for machining intricate patterns into the wafers.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-11107
Date14 August 2023
CreatorsThompson, Madeline Beth
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0158 seconds