Return to search

Seizure detection in electroencephalograms using data mining and signal processing / Detecção de convulsões em eletroencefalogramas usando miner- ação de dados e processamento de sinais

Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2017-08-22T13:26:59Z
No. of bitstreams: 1
texto completo.pdf: 5760621 bytes, checksum: f90e38633fae140744262e882dc7ae5d (MD5) / Made available in DSpace on 2017-08-22T13:26:59Z (GMT). No. of bitstreams: 1
texto completo.pdf: 5760621 bytes, checksum: f90e38633fae140744262e882dc7ae5d (MD5)
Previous issue date: 2017-03-10 / Agencia Boliviana Espacial / A epilepsia é uma das doenças neurológicas mais comuns definida como a predisposição a sofrer convulsões não provocadas. A Organização Mundial da Saúde estima que 50 milhões de pessoas estão sofrendo esta condição no mundo inteiro. O diagnóstico de epilepsia implica em um processo caro e longo baseado na opinião de especialistas com base em eletroencefalogramas (EEGs) e gravações de vídeo. Neste trabalho, foram desenvolvidos dois métodos para a predição automática de convulsões usando EEG e mineração de dados. O primeiro sistema desenvolvido é um método específico para cada paciente (patient-specific) que consiste em extrair características espectro-temporais de todos os canais de EEG, aplicar um algoritmo de redução de dimensão, recuperar o envelope do sinal e criar um modelo usando um classificador random forest. Testando este sistema com um grande banco de dados de epilepsia, atingimos 97% de especificidade e 99% de sensibilidade. Assim, a primeira proposta mostrou ter um grande potencial para colaborar com o diagnóstico em um contexto clínico. O segundo sistema desenvolvido é um método não específico do paciente (non-patient specific) que consiste em selecionar o sinal diferencial de dois eletrodos, aplicar um vetor de bancos de filtros para esse sinal, extrair atributos de séries temporais e criar um modelo preditivo usando uma árvore de decisão CART. O desempenho deste método foi de 95% de especificidade e 87% de sensibilidade. Estes valores não são tão altos quanto os de métodos propostos anteriormente. No entanto, a abordagem que propomos apresenta uma viabilidade muito maior para implementação em dispositivos que possam ser efetivamente utilizados por pacientes em larga escala. Isto porque somente dois elétrodos são utilizados e o modelo de predição é computacionalmente leve. Note-se que, ainda assim, o modelo xigerado apresenta um poder preditivo satisfatório e generaliza melhor que em trabalhos anteriores já que pode ser treinado com dados de um conjunto de pacientes e utilizado em pacientes distintos (non-patient specific). Ambas as propostas apresentadas aqui, utilizando abordagens distintas, demonstram ser alternativas de predição de convulsões com performances bastante satisfatórias sob diferentes circunstâncias e requisitos. / Epilepsy is one of the most common neurological diseases and is defined as the pre- disposition to suffer unprovoked seizures. The World Health Organization estimates that 50 million people are suffering this condition worldwide. Epilepsy diagnosis im- plies an expensive and long process based on the opinion of specialist personnel about electroencephalograms (EEGs) and video recordings. We have developed two meth- ods for automatic seizure detection using EEG and data mining. The first system is a patient-specific method that consists of extracting spectro-temporal features of 23 EEG channels, applying a dimension reduction algorithm, recovering the envelope of the signal, and creating a model using a random forest classifier. Testing this system against a large dataset, we reached 97% of specificity and 99% of sensitivity. Thus, our first proposal showed to have a great potential for diagnosis support in clinical context. The other developed system is a non-patient specific method that consists of selecting the differential signal of two electrodes, applying an array of filter banks to that signal, extracting time series features, and creating a predictive model using a decision tree. The performance of this method was 95% of specificity, and 87% of sensitivity. Although the performance is lower than previous propos- als, due to the design conditions and characteristics, our method allows an easier implementation with low hardware requirements. Both proposals presented here, using distinct approaches, demonstrate to be seizure prediction alternatives with very satisfactory performances under different circumstances and requirements.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:123456789/11589
Date10 March 2017
CreatorsOrellana, Marco Antônio Pinto
ContributorsCerqueira, Fabio Ribeiro
PublisherUniversidade Federal de Viçosa
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFV, instname:Universidade Federal de Viçosa, instacron:UFV
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0053 seconds