In this short paper we present work in progress that tries to leverage crowdsourced music metadata
and crowdsourced affective word norms to create a comprehensive dataset of music emotions, which
can be used for sentiment analyses in the music domain. We combine a mixture of different data
sources to create a new dataset of 90,408 songs with their associated embeddings in Russell’s model
of affect, with the dimensions valence, dominance and arousal. In addition, we provide a Spotify ID
for the songs, which can be used to add more metadata to the dataset via the Spotify API.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:92166 |
Date | 20 June 2024 |
Creators | Akiki, Christopher, Burghardt, Manuel |
Publisher | CEUR-WS.org |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds