Semantic parsing is the process of mapping a natural-language sentence into a machine-readable, formal representation of its meaning. The LSTM Encoder-Decoder is a neural architecture with the ability to map a source language into a target one. We are interested in the problem of mapping natural language into SPARQL queries, and we seek to contribute with strategies that do not rely on handcrafted rules, high-quality lexicons, manually-built templates or other handmade complex structures. In this context, we present two contributions to the problem of semantic parsing departing from the LSTM encoder-decoder. While natural language has well defined vector representation methods that use a very large volume of texts, formal languages, like SPARQL queries, suffer from lack of suitable methods for vector representation. In the first contribution we improve the representation of SPARQL vectors. We start by obtaining an alignment matrix between the two vocabularies, natural language and SPARQL terms, which allows us to refine a vectorial representation of SPARQL items. With this refinement we obtained better results in the posterior training for the semantic parsing model. In the second contribution we propose a neural architecture, that we call Encoder CFG-Decoder, whose output conforms to a given context-free grammar. Unlike the traditional LSTM encoder-decoder, our model provides a grammatical guarantee for the mapping process, which is particularly important for practical cases where grammatical errors can cause critical failures. Results confirm that any output generated by our model obeys the given CFG, and we observe a translation accuracy improvement when compared with other results from the literature. / A análise semântica é o processo de mapear uma sentença em linguagem natural para uma representação formal, interpretável por máquina, do seu significado. O LSTM Encoder-Decoder é uma arquitetura de rede neural com a capacidade de mapear uma sequência de origem para uma sequência de destino. Estamos interessados no problema de mapear a linguagem natural em consultas SPARQL e procuramos contribuir com estratégias que não dependam de regras artesanais, léxico de alta qualidade, modelos construídos manualmente ou outras estruturas complexas feitas à mão. Neste contexto, apresentamos duas contribuições para o problema de análise semântica partindo da arquitetura LSTM Encoder-Decoder. Enquanto para a linguagem natural existem métodos de representação vetorial bem definidos que usam um volume muito grande de textos, as linguagens formais, como as consultas SPARQL, sofrem com a falta de métodos adequados para representação vetorial. Na primeira contribuição, melhoramos a representação dos vetores SPARQL. Começamos obtendo uma matriz de alinhamento entre os dois vocabulários, linguagem natural e termos SPARQL, o que nos permite refinar uma representação vetorial dos termos SPARQL. Com esse refinamento, obtivemos melhores resultados no treinamento posterior para o modelo de análise semântica. Na segunda contribuição, propomos uma arquitetura neural, que chamamos de Encoder CFG-Decoder, cuja saída está de acordo com uma determinada gramática livre de contexto. Ao contrário do modelo tradicional LSTM Encoder-Decoder, nosso modelo fornece uma garantia gramatical para o processo de mapeamento, o que é particularmente importante para casos práticos nos quais erros gramaticais podem causar falhas críticas em um compilador ou interpretador. Os resultados confirmam que qualquer resultado gerado pelo nosso modelo obedece à CFG dada, e observamos uma melhora na precisão da tradução quando comparada com outros resultados da literatura.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01042019-101602 |
Date | 07 February 2019 |
Creators | Luz, Fabiano Ferreira |
Contributors | Finger, Marcelo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0026 seconds