Orientador: Thaís Fernanda Mendes Monis / Banca: Thiago de Melo / Banca: Daniel Vendrúscolo / Resumo: Neste trabalho nós estudamos o seguinte resultado: para um espaço métrico compacto X, de dimensão n, o subespaço dos mergulhos de X em R2n é denso no espaço das funções contínuas de X em R2n se, e somente se, dim(X x X)<2n. A demonstração apresentada é aquela dada por J. Krasinkiewicz e por S. Spiez / Abstract: In this work we study the following result: given a compact metric space X of dimension n, the subspace consisting of all embeddings of X into R2n is dense in the space of all continuous maps of X into R2n if and only if dim(X x X)<2n. The presented proof is the one given by J. Krasinkiewicz e por S. Spiez / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000872716 |
Date | January 2016 |
Creators | Melo, Givanildo Donizeti de. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese, Portuguese, Texto em português; resumos em português e inglês |
Detected Language | Portuguese |
Type | text |
Format | 79 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.002 seconds