Dans la présente thèse de doctorat, les C*-algèbres des groupes de Lie connexes réels nilpotents de pas deux et du groupe de Lie SL(2,R) sont caractérisées. En outre, comme préparation à une analyse de sa C*-algèbre, la topologie du spectre du produit semi-direct U(n) x H_n est décrite, où H_n dénote le groupe de Lie de Heisenberg et U(n) le groupe unitaire qui agit sur H_n par automorphismes. Pour la détermination des C*-algèbres de groupes, la transformation de Fourier à valeurs opérationnelles est utilisée pour appliquer chaque C*-algèbre dans l'algèbre de tous les champs d'opérateurs bornés sur son spectre. On doit trouver les conditions que satisfait l'image de cette C*-algèbre sous la transformation de Fourier et l'objectif est de la caractériser par ces conditions. Dans cette thèse, il est démontré que les C*-algèbres des groupes de Lie connexes réels nilpotents de pas deux et la C*-algèbre de SL(2,R) satisfont les mêmes conditions, des conditions appelées «limites duales sous contrôle normique». De cette manière, ces C*-algèbres sont décrites dans ce travail et les conditions «limites duales sous contrôle normique» sont explicitement calculées dans les deux cas. Les méthodes utilisées pour les groupes de Lie nilpotents de pas deux et pour le groupe SL(2,R) sont très différentes l'une de l'autre. Pour les groupes de Lie nilpotents de pas deux, on regarde leurs orbites coadjointes et on utilise la théorie de Kirillov, alors que pour le groupe SL(2,R), on peut mener les calculs plus directement / In this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Identifer | oai:union.ndltd.org:theses.fr/2016LORR0118 |
Date | 22 September 2016 |
Creators | Günther, Janne-Kathrin |
Contributors | Université de Lorraine, Université du Luxembourg, Ludwig, Jean, Olbrich, Martin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds