Cette thèse donne une étude systématique des espaces de Sobolev, Besov et Triebel-Lizorkin sur le tore quantique. Ces espaces partagent beaucoup de propènes avec leurs analogues classiques. Nous prouvons le théorème de réduction pour tous ces espaces et une inégalité de Poincaré pour les espaces de Sobolev. Nous démontrons les inégalités de plongement pour eux, incluant le plongement d'espaces de Besov et d'espaces de Sobolev. Nous obtenons une caractérisation générale à la Littlewood-Paley pour les espaces de l3esov et Triebel-Lizorkin, qui implique des caractérisations concrètes par les semigroupes de Poisson et de chaleur ainsi par des différences. Certains d'entre elles sont nouvelles, même dans le cas commutatif; par exemple, celle d'espaces de Besov et Triebel-Lizorkin par le semigroupe de Poisson améliore le résultat classique. En conséquence de la caractérisation d'espaces de Besov par des différences, nous étendons les récents résultats de Bourgain-Brézis -Mironescu et Maz'ya-Shaposhnikova sur les limites de normes de Besov au cadre quantique. Nous étudions aussi l'interpolation de ces espaces, et en particulier, déterminons explicitement le K-fonctionnel du couple de l'espace Lp et l'espace de Sobolev, ce qui est l'analogue quantique du résultat classique de Johnen et Scherer. Enfin, nous montrons que les multiplicateurs de Fourier complètement bornés sur tous ces espaces coïncident avec ceux sur les espaces correspondants sur le tore usuel. Nous prouvons également que les multiplicateurs de Fourier sur les espaces de Besov sont complètement déterminés par ceux sur les sous-espaces Lp associés à leurs composantes dans la décomposition de Littlewood-Paley. / This thesis gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus. We prove, arnong other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We establish the embedding inequalities of all these spaces, including the l3esov and Sobolev embedding theorems. We obtain Littlewood-Paley type characterizations for Besov and 'friebel-Lizorki spaces in a general way, as well as the concrete ones internas of the Poisson, heat semigroups and differences. Some of them are new even in the commutative case, for instance, oui Poisson semigroup characterization of Besov and Triebel-Lizorkin spaces improves the classical ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz'ya-Shaposhnikova on the limits of l3esov florins. We investigate the interpolation of all these spaces, in particular, deterrnine explicitly the K-functional of the couple of Lp space and Sobolev space, winch is the quantum analogue of a classical result due to Johnen and Scherer Finally, we show that the completely bounded Fourier multipliers on all these spaces coincide with those on the corresponding spaces on the usuel d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers on the Besov spaces in ternis of their behavior on the Lp-components in the Littlevvood-Paley decomposition.
Identifer | oai:union.ndltd.org:theses.fr/2015BESA2029 |
Date | 02 July 2015 |
Creators | Xiong, Xiao |
Contributors | Besançon, Quanhua, Xu |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds