• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 10
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Poids de Beurling et algèbre de Fourier du groupe affine d'un corps local

Nasserddine, Wassim Gebuhrer, Marc-Olivier. January 2007 (has links) (PDF)
Thèse doctorat : Mathématiques : Strasbourg 1 : 2005. / Titre provenant de l'écran-titre. Bibliogr. 3 p.
2

Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs / Rigidity and non-rigidity of group actions on non-commutative Lp spaces

Olivier, Baptiste 21 May 2013 (has links)
Nous étudions des propriétés de rigidité et des propriétés de non-rigidité forte d'actions de groupes sur des espaces Lp non-commutatifs. Récemment, des variantes de la propriété (T) de Kazhdan et de la propriété de point fixe (FH) ont été introduites, appelées respectivement propriété (TB) et propriété (FB), et énoncées en termes de représentations orthogonales sur un espace de Banach B. Nous nous intéressons au cas où B est un espace Lp non-commutatif Lp(M), associé à une algèbre de von Neumann M. Dans un premier temps, nous montrons qu'un groupe possédant la propriété (T) possède la propriété (TLp(M)) pour toute algèbre de von Neumann M. On en déduit que les groupes de rang supérieur ont la propriété (FLp(M)). Nous montrons que pour certaines algèbres, comme par exemple M=B(H), les propriétés (T) et (TLp(M) sont équivalentes. A l'opposé, nous caractérisons les groupes possédant la propriété (Tlp), et montrons que cette classe de groupes est strictement plus grande que celle avec la propriété (T). Dans un second temps, nous introduisons des variantes de la propriété (H) de Haagerup, les propriétés (HLp(M)) et l' a-FLp(M)-menabilité, définies en termes d'actions sur l'espace Lp(M). Nous décrivons les liens entre la propriété (H) et sa variante (HLp(M)) suivant l'algèbre M considérée. Nous montrons que les groupes possédant (H) sont a-FLp(M)-menables pour certaines algèbres M, comme par exemple le facteur II infini hyperfini. / We studied rigidity properties and strong non-rigidity properties for group actions on non-commutative Lp spaces. Recently, variants of Kazhdan's property (T) and fixed-point property (FH) were introduced, respectively called property (TB) and property (FB), and described in terms of orthogonal representations on a Banach space B. We are interested in the case where B is a non-commutative Lp space Lp(M), associated to a von Neumann algebra M. In a first part, we show that if a group has property (T), then it has property (TLp(M)) for any von Neumann algebra M. We deduce that higher rank groups have property (FLp(M)). We show that for some algebras, such as M=B(H), properties (T) and (TLp(M)) are equivalent. By contrast, we characterize groups with property (Tlp), and show that this class of groups is larger than the one with property (T). In a second part, we introduce variants of the Haagerup property (H), namely properties (HLp(M)) and a-FLp(M)-menability, defined in terms of actions on the space Lp(M). We describe relationships between property (H) and its variant (HLp(M)) for different algebras M. We show that groups with property (H) are a-FLp(M)-menable for some algebras M, such as the hyperfinite II infinite factor.
3

Espaces de Hardy en probabilités et analyse harmonique quantiques

Yin, Zhi 07 June 2012 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique à valeurs operateurs. La thèse est composée des trois parties.Dans la première partie, on démontre la décomposition atomique des espaces de Hardy de martingales non commutatives. On identifie aussi les interpolés complexes et réels entre les versions conditionnelles des espaces de Hardy et BMO de martingales non commutatives.La seconde partie est consacrée à l'étude des espaces de Hardy à valeurs opérateursvia la méthode d'ondellettes. Cette approche est similaire à celle du cas des martingales non commutatives. On démontre que ces espaces de Hardy sont équivalents à ceux étudiés par Tao Mei. Par conséquent, on donne une base explicite complètement inconditionnelle pour l'espace de Hardy H1(R), muni d'une structure d'espace d'opérateurs naturelle. La troisième partie porte sur l'analyse harmonique sur le tore quantique. On établit les inégalités maximales pour diverses moyennes de sommation des séries de Fourier définies sur le tore quantique et obtient les théorèmes de convergence ponctuelle correspondant. En particulier, on obtient un analogue non commutative du théorème classique de Stein sur les moyennes de Bochner-Riesz. Ensuite, on démontre que les multiplicateurs de Fourier complètement bornés sur le tore quantique coïncident à ceux définis sur le tore classique. Finalement, on présente la théorie des espaces de Hardy et montre que ces espaces possèdent les propriétés des espaces de Hardy usuels. En particulier, on établit la dualité entre H1 et BMO.
4

Espaces Lp de l'algèbre de von Neumann d'un groupoïde mesuré.

Perrin Boivin, Patricia 23 March 2007 (has links) (PDF)
L'inégalité de Hausdorff-Young a été généralisée aux groupes localement compacts par R. Kunze dans le cas unimodulaire puis par M. Terp dans le cas général. Une version de cette inégalité a été donnée par B. Russo pour les opérateurs intégraux. Dans cette thèse, on établit une inégalité de Hausdorff-Young pour les groupoïdes mesurés qui recouvre ces résultats. Comme dans les cas des groupes non commutatifs, on utilise la théorie non commutative de l'intégration. La majeure partie de ce travail est l'identification des espaces Lp de l'algèbre de von Neumann du groupoïde dans les cas p=1, 2 comme espaces de fonctions et aussi comme espaces d'opérateurs aléatoires.
5

Espaces de fonctions sur les tores quantiques / Function spaces on quantum lori

Xiong, Xiao 02 July 2015 (has links)
Cette thèse donne une étude systématique des espaces de Sobolev, Besov et Triebel-Lizorkin sur le tore quantique. Ces espaces partagent beaucoup de propènes avec leurs analogues classiques. Nous prouvons le théorème de réduction pour tous ces espaces et une inégalité de Poincaré pour les espaces de Sobolev. Nous démontrons les inégalités de plongement pour eux, incluant le plongement d'espaces de Besov et d'espaces de Sobolev. Nous obtenons une caractérisation générale à la Littlewood-Paley pour les espaces de l3esov et Triebel-Lizorkin, qui implique des caractérisations concrètes par les semigroupes de Poisson et de chaleur ainsi par des différences. Certains d'entre elles sont nouvelles, même dans le cas commutatif; par exemple, celle d'espaces de Besov et Triebel-Lizorkin par le semigroupe de Poisson améliore le résultat classique. En conséquence de la caractérisation d'espaces de Besov par des différences, nous étendons les récents résultats de Bourgain-Brézis -Mironescu et Maz'ya-Shaposhnikova sur les limites de normes de Besov au cadre quantique. Nous étudions aussi l'interpolation de ces espaces, et en particulier, déterminons explicitement le K-fonctionnel du couple de l'espace Lp et l'espace de Sobolev, ce qui est l'analogue quantique du résultat classique de Johnen et Scherer. Enfin, nous montrons que les multiplicateurs de Fourier complètement bornés sur tous ces espaces coïncident avec ceux sur les espaces correspondants sur le tore usuel. Nous prouvons également que les multiplicateurs de Fourier sur les espaces de Besov sont complètement déterminés par ceux sur les sous-espaces Lp associés à leurs composantes dans la décomposition de Littlewood-Paley. / This thesis gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus. We prove, arnong other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We establish the embedding inequalities of all these spaces, including the l3esov and Sobolev embedding theorems. We obtain Littlewood-Paley type characterizations for Besov and 'friebel-Lizorki spaces in a general way, as well as the concrete ones internas of the Poisson, heat semigroups and differences. Some of them are new even in the commutative case, for instance, oui Poisson semigroup characterization of Besov and Triebel-Lizorkin spaces improves the classical ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz'ya-Shaposhnikova on the limits of l3esov florins. We investigate the interpolation of all these spaces, in particular, deterrnine explicitly the K-functional of the couple of Lp space and Sobolev space, winch is the quantum analogue of a classical result due to Johnen and Scherer Finally, we show that the completely bounded Fourier multipliers on all these spaces coincide with those on the corresponding spaces on the usuel d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers on the Besov spaces in ternis of their behavior on the Lp-components in the Littlevvood-Paley decomposition.
6

Quelques problèmes en analyse harmonique non commutative

Hong, Guixiang 29 September 2012 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique non commutative. Elle est constituée de trois parties. La première partie démontre l'analogue non commutatif de l'inégalité de John-Nirenberg et la décomposition atomique pour les martingales non commutatives. Ces résultats étendent et améliorent ceux qui existent déjà, et correspondent exactement à ceux que l'on connaît dans le cas classique. La deuxième partie est consacrée à l'étude des espaces de Hardy à valeurs opérateurs via la méthode d'ondelettes. Il est montré que les espaces de Hardy définis par ondelettes coïncident avec ceux définis par les fonctions carrées de Littlewood-Paley et Lusin. Cette approche est similaire à celle du cas des martingales non commutatives, mais l'utilisation des outils de martingales en analyse harmonique permet une démonstration plus rapide. Dans la troisième partie, nous nous tournons vers des applications de la théorie bien établie des espaces de Hardy, c'est-à-dire des opérateurs de Calderón-Zygmund (OCZ pour abréviation) associés à des noyaux à valeurs matricielles. On obtient des estimations de type faible (1, 1) pour des OCZ dyadiques parfaites et des shifts de Haar annulateurs associés à des noyaux non commutatifs, ainsi que des estimations de type H1 → L1 pour des OCZ arbitaires d'après une décomposition d'une fonction en ligne/colonne. En conjonction avec L∞ → BMO, nous établissons certaines estimations de type Lp. Cette approche s'applique aussi à des paraproduits et des transformées de martingales avec des symboles et coefficients non commutatifs respectivement.
7

Estimation de normes dans les espaces Lp non commutatifs et applications / Estimates of norms in noncommutative Lp-spaces and applications

Arhancet, Cédric 25 November 2011 (has links)
Cette thèse présente quelques résultats d’analyse sur les espaces Lp le plus souvent non commutatifs.La première partie exhibe de large classes de contractions sur des espaces Lp non commutatifsqui vérifient l’analogue non commutatif de la conjecture de Matsaev. De plus, cette partie fournitune comparaison entre certaines normes apparaissant naturellement dans ce domaine. La deuxièmepartie traite des fonctions carrées. Le premier résultat principal énonce que si T est un opérateurR-Ritt sur un espace Lp alors les fonctions carrées associées sont équivalentes. Le second résultatprincipal est une caractérisation de certaines estimations carrées utilisant les dilatations. La troisièmepartie de cette thèse introduit de nouvelles fonctions carrées pour les opérateurs de Ritt définis surdes espaces Lp non commutatifs. Le résultat principal est qu’en général ces fonctions carrées ne sontpas équivalentes. Cette partie contient aussi un résultat d’équivalence entre la norme usuelle et unecertaine fonction carrée. La quatrième partie introduit un analogue non commutatif de l’algèbre deFigà-Talamanca-Herz Ap(G) sur le prédual naturel de l’espace d’opérateurs Mp,cb des multiplicateursde Schur complètement bornées sur l’espace de Schatten Sp. / This thesis presents some results of analysis in Lp-spaces, especially often noncommutative. Thefirst part exhibits large classes of contractions on noncommutative Lp-spaces which satisfy the noncommutativeanalogue of Matsaev’s conjecture. Moreover, this part gives a comparison between variousnorms arising naturally from this field. The second part is devoted to square functions. The firstmain result states that if T is an R-Ritt operator on a Lp-space then the involved square functionsare equivalent. The second principal result is a characterization of some square functions estimatesin terms of dilations. In the third part of this thesis, we introduce some new square functions forRitt operators defined on noncommutative Lp-spaces. The main result is that these square functionsare generally not equivalent. This part also contains a result of equivalence between the usual normand some special square function. The fourth part introduces a noncommutative analogue of theFigà-Talamanca-Herz algebra Ap(G) on the natural predual of the operator space Mp,cb of completelybounded Schur multipliers on the Schatten space Sp.
8

Estimation de normes dans les espaces Lp non commutatifs et applications

Arhancet, Cédric 25 November 2011 (has links) (PDF)
Cette thèse présente quelques résultats d'analyse sur les espaces Lp le plus souvent non commutatifs.La première partie exhibe de large classes de contractions sur des espaces Lp non commutatifsqui vérifient l'analogue non commutatif de la conjecture de Matsaev. De plus, cette partie fournitune comparaison entre certaines normes apparaissant naturellement dans ce domaine. La deuxièmepartie traite des fonctions carrées. Le premier résultat principal énonce que si T est un opérateurR-Ritt sur un espace Lp alors les fonctions carrées associées sont équivalentes. Le second résultatprincipal est une caractérisation de certaines estimations carrées utilisant les dilatations. La troisièmepartie de cette thèse introduit de nouvelles fonctions carrées pour les opérateurs de Ritt définis surdes espaces Lp non commutatifs. Le résultat principal est qu'en général ces fonctions carrées ne sontpas équivalentes. Cette partie contient aussi un résultat d'équivalence entre la norme usuelle et unecertaine fonction carrée. La quatrième partie introduit un analogue non commutatif de l'algèbre deFigà-Talamanca-Herz Ap(G) sur le prédual naturel de l'espace d'opérateurs Mp,cb des multiplicateursde Schur complètement bornées sur l'espace de Schatten Sp.
9

Propriété UMD pour les espaces de Banach et d'opérateurs

Qiu, Yanqi 13 December 2012 (has links) (PDF)
Cette thèse présente quelques résultats sur la théorie locale pour les espaces de Banach et d'opérateurs. La première partie consiste en l'étude de la propriété $\text{OUMD}$ pour l'espace colonne $C$. La deuxième partie traite de la propriété $\text{UMD}$ classique pour les espaces $L_p(L_q)$ itérés. Le résultat principal donne une construction nouvelle et très naturelle de treillis de Banach qui sont super-réflexifs et non-$\text{UMD}$: L'espace $L_p(L_q(L_p(L_q(\cdots$ itéré une infinité de fois est super-réflexif si $1 < p, q < \infty$ mais n'est pas $\text{UMD}$ si $p \ne q$.
10

Some problems in harmonic analysis on quantum groups / Quelques problèmes en analyse harmonique sur les groupes quantiques

Wang, Simeng 22 June 2016 (has links)
Cette thèse étudie quelques problèmes d’analyse harmonique sur les groupes quantiques compacts. Elle consiste en trois parties. La première partie présente la théorie Lp élémentaire des transformées de Fourier, les convolutions et les multiplicateurs sur les groupes quantiques compacts, y compris la théorie de Hausdorff-Young et les inégalités de Young.Dans la seconde partie, nous caractérisons les opérateurs de convolution positifs sur un groupe quantique fini qui envoient Lp dans L2, et donnons aussi quelques constructions sur les groupes quantiques compacts infinis. La méthode pour étudier les états non-dégénérés fournit une formule générale pour calculer les états idempotents associés aux images deHopf, qui généralise un travail de Banica, Franz et Skalski. La troisième partie est consacrée à l’étude des ensembles de Sidon, des ensembles _(p) et des notions associées pour les groupes quantiques compacts. Nous établissons différentes caractérisations des ensembles de Sidon, et en particulier nous démontrons que tout ensemble de Sidon est un ensemble de Sidon fort au sens de Picardello. Nous donnons quelques liens entre les ensembles de Sidon, les ensembles _(p) et les lacunarités pour les multiplicateurs de Fourier sur Lp, généralisant un travail de Blendek et Michali˘cek. Nous démontrons aussi l’existence des ensembles de type _(p) pour les systèmes orthogonaux dans les espaces Lp non commutatifs, et déduisons les propriétés correspondantes pour les groupes quantiques compacts. Nous considérons aussi les ensembles de Sidon centraux, et nous prouvons que les groupes quantiques compacts ayant les mêmes règles de fusion et les mêmes fonctions de dimension ont des ensemble de Sidon centraux identiques. Quelques exemples sont aussi étudiés dans cette thèse. Les travaux présentés dans cette thèse se basent sur deux articles de l’auteur. Le premier s’intitule “Lp-improving convolution operators on finite quantum groups” et a été accepté pour publication dans Indiana University Mathematics Journal, et le deuxième est un travail intitulé “Lacunary Fourier series for compact quantum groups” et a été publié en ligne dans Communications in Mathematical Physics. / This thesis studies some problems in the theory of harmonic analysis on compact quantum groups. It consists of three parts. The first part presents some elementary Lp theory of Fourier transforms, convolutions and multipliers on compact quantum groups, including the Hausdorff-Young theory and Young’s inequalities. In the second part, we characterize positive convolution operators on a finite quantum group G which are Lp-improving, and also give some constructions on infinite compact quantum groups. The methods for ondegeneratestates yield a general formula for computing idempotent states associated to Hopf images, which generalizes earlier work of Banica, Franz and Skalski. The third part is devoted to the study of Sidon sets, _(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, _(p)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michali˘cek. We also prove the existence of _(p)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included. The thesis is principally based on two works by the author, entitled “Lp-improvingconvolution operators on finite quantum groups” and “Lacunary Fourier series for compact quantum groups”, which have been accepted for publication in Indiana University Mathematics Journal and Communications in Mathematical Physics respectively.

Page generated in 0.0308 seconds