Return to search

Fonctions critiques et équations aux dérivées partielles elliptiques sur les variétés riemanniennes compactes

Cette thèse s'intéresse à la résolution d'EDP non linéaire sur une variété riemannienne compacte (M,g) de dimension n 3 de la forme : . Ces équations ont une structure variationnelle et on cherche des solutions qui minimisent l'énergie : parmi les fonctions u de W1,2 qui vérifient Cf(u)= . Th. Aubin a montré qu'on a toujours : , où cn est une constante qui ne dépend que de la dimension, et que de plus si l'inégalité est stricte, alors l'équation a des solutions minimisantes. Je montre dans mon travail des théorèmes d'existence dans le cas limite où cette inégalité est une égalité en utilisant une notion de « fonction critique » introduite par E. Hebey et M. Vaugon, et je montre différents résultats concernant ces fonctions critiques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007685
Date04 December 2004
CreatorsCollion, Stephane
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds