Return to search

On-Engine Turbocharger Performance Considering Heat Transfer

Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations. Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochargers, the maps have to be shifted and corrected in the 1-D engine simulation, which mass and efficiency multipliers usually do for both the turbine and the compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The heat transfer leads to a deviation from turbocharger performance maps, and increased complexity of the turbocharged engine simulation. Turbochargers operate under different heat transfer situations while they are installed on the engines. The main objectives of this thesis are: heat transfer modeling of a turbocharger to quantify and qualify heat transfer mechanisms, improving turbocharged engine simulation by including heat transfer in the turbocharger, assessing the use of two different turbocharger performance maps concerning the heat transfer situation (cold-measured and hot-measured turbocharger performance maps) in the simulation of a measured turbocharged engine, prediction of turbocharger walls’ temperatures and their effects on the turbocharger performance on different heat transfer situations. Experimental investigation has been performed on a water-oil-cooled turbocharger, which was installed on a 2-liter GDI engine for different load points of the engine and different heat transfer situations on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings. In addition, several thermocouples have been used on accessible surfaces of the turbocharger to calculate external heat transfers. Based on the heat transfer analysis of the turbocharger, the internal heat transfer from the bearing housing to the compressor significantly affects the compressor. However, the internal heat transfer from the turbine to the bearing housing and the external heat transfer of the turbine housing mainly influence the turbine. The external heat transfers of the compressor housing and the bearing housing, and the frictional power do not play an important role in the heat transfer analysis of the turbocharger. The effect of the extra cooling fan on the energy balance of the turbocharger is significant. However, the effect of the water is more significant on the external heat transfer of the bearing housing and the internal heat transfer from the bearing housing to the compressor. It seems the radiation shield between the turbine and the compressor has no significant effect on the energy balance of the turbocharger. The present study shows that the heat transfer in the turbocharger is very crucial to take into account in the engine simulations. This improves simulation predictability in terms of getting the compressor efficiency multiplier equal to one and turbine efficiency multiplier closer to one, and achieving turbine outlet temperature close to the measurement. Moreover, the compressor outlet temperature becomes equal to the measurement without correcting the map. The heat transfer situation during the measurement of the turbocharger performance influences the amount of simulated heat flow to the compressor. The heat transfer situation may be defined by the turbine inlet temperature, oil heat flux and water heat flux. However, the heat transfer situation on the turbine makes a difference on the required turbine efficiency multiplier, rather than the amount of turbine heat flow. It seems the turbine heat flow is a stronger function of available energy into the turbine. Of great interest is the fact that different heat situations on the turbocharger do not considerably influence the pressure ratio of the compressor. The turbine and compressor efficiencies are the most important parameters that are affected by that. The component temperatures of the turbocharger influence the working fluid temperatures. Additionally, the turbocharger wall temperatures are predictable from the experiment. This prediction enables increased precision in engine simulations for future works in transient operations. / QC 20120504

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-93981
Date January 2012
CreatorsAghaali, Habib
PublisherKTH, Maskinkonstruktion (Inst.), Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-MMK, 1400-1179 ; 2012:08

Page generated in 0.0027 seconds