Uppsatsen undersöker om valet av hanteringsmetod av ordinalskalevariabler kan kopplas till den linjära regressionsmodellens prediceringsförmåga. Antalet hanteringsmetoder som undersöks begränsas till: dummyvariabler, summerat index och viktat summerat index. Stöd för alla tre metoder finns i litteraturen även om det för indexeringarna finns viss förvirring i begreppsanvändning. Med summerat index menas, i denna uppsats, när flera indikatorer som mätts med likertskalor adderas till en ny variabel som antas mäta den latenta variabeln. Med viktat summerat index tas det hänsyn till att indikatorerna kan vara något överlappande eller ha olika stor betydelse för den latenta variabeln. Därför appliceras någon form av viktningsanalys på indikatorerna innan summering sker, denna uppsats använder principalkomponentsanalys. K-delad korsvalidering har nyttjats som främsta analysverktyg för att kunna jämföra de olika hanteringsmetoderna. Jämförandet sker på basis av fyra jämförande mått: R2 , Steins R2j , RMSE samt MAE. Resultaten indikerar att modeller med dummyvariabler har bäst prediceringsförmåga men det ska förstås utifrån att modellerna hade problem med att uppfylla den linjära regressionsmetodens antaganden. Alla tre hanteringsmetoder har sina för- och nackdelar och därför behöver valet av hanteringsmetod alltid ske med hänsyn till aktuell undersökning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-202516 |
Date | January 2021 |
Creators | Grans Norgren, Selma |
Publisher | Stockholms universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds