A design methodology to mitigate timing problems due to long wire delays is proposed. The timing problems are taking care of at architecture level instead of layout level in this design method so that no change is needed when the whole design goes to backend design. Hence design iterations are avoided by using this design methodology. The proposed design method is based on STARI architecture, and a novel initialization mechanism is proposed in this paper. Low frequency global clock is used to synchronize the communication and PLLs are used to provide high frequency working clocks. The feasibility of new design methodology is proved on FPGA test board and the implementation details are also described in this paper. Only standard library cells are used in this design method and no change is made to the traditional design flow. The new design methodology is expected to reduce the timing closure effort in high frequency and complex digital design in deep submicron technologies.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2767 |
Date | January 2005 |
Creators | Sheng, Cheng |
Publisher | Linköpings universitet, Institutionen för systemteknik, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0089 seconds