Return to search

Development of an insert for a gripper and a fastening system : Exemplified for a human robot collaborative assembly process

Nowadays, the use of robots in industrial tasks is growing constantly. However, manual assembly is one area that is hard to make fully automated since manual assembly operations work with different shapes and products that require human finesse to do some operations. Humans, on the other hand, have a lot of limitations since this kind of task can be unergonomic and repetitive for operators, which can cause them stress, fatigue, repetitive stress injuries(RSI), and repetitive motion injuries. This project involved designing an insert for the gripper 2F-85 (version 3) that would allow the collaborative robot (UR5) to carry out more assembly tasks in order to relieve human workers of repetitive tasks. The insert has to handle cylindrical shapes in addition to bigger parts that the actual insert cannot handle due to its parallel stroke. For that, a detailed market analysis and insert research were conducted in the initial study. The new insert was then developed using a double-diamond design process. The needs were ranked using the Moscow prioritization method, and ideas were then generated using the brainstorming technique. The final concept was chosen using the weighted decision matrix method. After the final concept selection, computer-aided design (CAD) technology was employed to create the new insert's 3D model and its technical specifications. The mechanical behaviour of the new insert was analysed to reflect its range of workability, expressing the maximum force that it can withstand on each of its grip work surfaces without presenting plastic deformation. For this study, finite element analyses were conducted following the general method for linear structural analysis using Abaqus. Achieving an insert that can reach, transport, and assemble different shapes will help integrate collaborative robots into manual assembly processes, avoiding the cost of a new gripper.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-22664
Date January 2022
CreatorsDimuro Duckwitz, Gonzalo
PublisherHögskolan i Skövde, Institutionen för ingenjörsvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0045 seconds