Les maladies cardiovasculaires sont l’une des principale causes de mortalité dans le monde, engendrant le décès de plus de 17 millions de personnes par an. Ce chiffre éloquent augmentera jusqu’à atteindre selon l’OMS 23,4 millions de décès en 2030. Ces maladies sont associées à un rétrécissement de la lumière des vaisseaux sanguins qui peut entrainer une occlusion partielle ou complète du vaisseau. Le traitement le plus souvent utilisé est un traitement chirurgical visant à créer un pont qui va contourner la section obstruée, ou une section lésée.Actuellement, les conduits les plus utilisés pour les greffes sont les vaisseaux autologues, à savoir la veine saphène ou l’artère thoracique interne. Seulement, ces substituts ne peuvent être utilisés en remplacement que s’ils sont sains. L’alternative aux vaisseaux autologue est l’utilisation de substituts synthétiques. Due à un certain manque de biocompatibilité de ces greffons synthétiques, après quelques années seulement, un phénomène de thrombose s’installe, en cause ; l’absence de cellules endothéliales (CEs) qui recouvrent l’intérieur du substitut.Le point clé réside ici dans la fabrication d’un matériau capable de fournir au CEs un environnement favorable à leur adhésion et leur prolifération pour permettre la génération d’un endothélium à l’intérieur d’un substitut synthétique. In vivo, les cellules capables de coloniser de tels matériaux sont les cellules progénitrices endothéliales, ces cellules sont capables de se différencier en cellules endothéliales matures et possèdent une capacité de prolifération supérieure aux cellules matures. Elles sont capables de réparer les vaisseaux et pourront donc être ciblées afin d’être recrutées in situ et ainsi endothélialiser le biomatériau.C’est dans ce contexte que nous avons choisi de modifier de façon chimique la surface d’un matériau model, un film de PET avec quatre principes actifs innovants sélectionnés pour leur capacité à induire l’adhésion des cellules ou leur différentiation pour permettre la régénération d’un endothélium à la surface du matériau.Ce projet a permis dans un premier temps de mettre au point un protocole pour greffer des principes actifs de façon covalente avec une densité reproductible et de façon microstructurée en utilisant la photolithographie. Ici, les peptides GRGDS et GHM ont été greffés pour améliorer l’adhésion des cellules, le dernier étant spécifique aux cellules endothéliales progénitrices. Le peptide SFLLRN et la sitagliptine ont été greffés pour induire ou accélérer la différenciation des EPCs en CEs matures. Toutes les surfaces ont été caractérisées pour valider le greffage covalent et connaitre la densité de molécules bioactives greffée.D’autre part avec une caractérisation approfondie des EPCs issues du sang de cordon ombilical, certains gènes caractéristiques des cellules souches et endothéliales ont été suivis par immunofluorescence et RT-qPCR pour déterminer leur état de différenciation. Ce travail n’aura été possible qu’après avoir déterminé quels gènes de références nous pouvions utiliser pour étudier le phénotype de trois types cellulaires à savoir, les cellules mononuclées CD34+, les EPCs et des CEs matures (extraites de la veine saphène). [...] En conclusion générale, ce projet prouve que la modification de surfaces des substituts avec des molécules bioactives est indispensable pour rendre le matériau attractif et pour régénérer un endothélium à la surface de celui-ci. Ce travail nous a aidé souligner l’importance de comprendre le comportement des EPCs et leur cinétique de différenciation pour leur utilisation en ingénierie vasculaire. / Cardiovascular disease is one of the leading causes of death in the world, killing more than 17 million people a year. This eloquent figure will increase to 23.4 million deaths in 2030, according to the WHO. These diseases are associated with a narrowing of the lumen of the blood vessels that may cause partial or complete occlusion of the vessel. The treatment most often used is a surgical treatment designed to create a bridge that will bypass the obstructed section or an injured section.Currently, the most used conduits for transplants are autologous vessels, namely the saphenous vein or the internal thoracic artery. Only these substitutes can only be used as a replacement if they are healthy. The alternative to autologous vessels is the use of synthetic substitutes. Due to a certain lack of biocompatibility of these synthetic grafts, after only a few years, a phenomenon of thrombosis sets in; the absence of endothelial cells (ECs) that cover the interior of the substitute.The key point here lies in the manufacture of a material capable of providing the ECs with a favorable environment for their adhesion and proliferation to allow the generation of an endothelium within a synthetic substitute. In vivo, cells capable of colonizing such materials are endothelial progenitor cells, these cells are capable of differentiating into mature endothelial cells and possess a higher proliferation capacity than mature cells. They are able to repair the vessels and can, therefore, be targeted to be recruited in situ and thus endothelialize the biomaterial.It is in this context that we have chosen to chemically modify the surface of a model material, a PET film with four innovative active ingredients selected for their ability to induce cell adhesion or differentiation to allow regeneration. an endothelium on the surface of the material.This project has initially made it possible to develop a protocol for grafting active ingredients covalently with a reproducible density and in a microstructured manner using photolithography. Here, the GRGDS and GHM peptides were grafted to enhance cell adhesion, the latter being specific to endothelial progenitor cells. The SFLLRN peptide and sitagliptin have been grafted to induce or accelerate the differentiation of EPCs into mature ECs. All surfaces have been characterized to validate covalent grafting and to know the density of grafted bioactive molecules.On the other hand, with a thorough characterization of EPCs from umbilical cord blood, some characteristic genes of stem and endothelial cells were followed by immunofluorescence and RT-qPCR to determine their state of differentiation. This work will have been possible only after determining which reference genes we could use to study the phenotype of three cell types namely, CD34 + mononuclear cells, EPCs and mature ECs (saphenous vein extract). [...] As a general conclusion, this project proves that surface modification of substitutes with bioactive molecules is essential to make the material attractive and to regenerate an endothelium on the surface of it. This work has helped us emphasize the importance of understanding the behavior of EPCs and their kinetics of differentiation for their use in vascular engineering.
Identifer | oai:union.ndltd.org:theses.fr/2018BORD0169 |
Date | 01 October 2018 |
Creators | Royer, Caroline |
Contributors | Bordeaux, Université Laval (Québec, Canada), Durrieu, Marie-Christine, Laroche, Gaëtan |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds