• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Method to Enhance Re-Endothelialization of Tissue Engineered Decellularized Allograft Heart Scaffolds

Desai, Leena Unknown Date
No description available.
2

A Method to Enhance Re-Endothelialization of Tissue Engineered Decellularized Allograft Heart Scaffolds

Desai, Leena 11 1900 (has links)
Allograft tissue is used to reconstruct cardiac birth defects but induces an immune response resulting in allo-sensitization. Decellularization reduces the immune response, however, acellular vascular tissue is thrombogenic. In-vitro endothelialization may attenuate thrombogenicity. Here we offer our work, which determines a novel method of endothelial cell attachment using Arginine-Glycine-Aspartic Acid (RGD) peptides. We show that an RGD-FITC peptide can be bound to a decellularized ovine cardiac scaffold. RGD modification increases HUVEC cell adhesion to the surface at 3 days of static incubation in-vitro compared to decellularized tissue alone. Repetition using a decellularized human scaffold shows similar results. Cleavage of the potentially immunogenic FITC label retains our RGD peptide. In summary, we determine that decellularized allografts show enhanced HUVEC cell adhesion when modified with an RGD peptide under static conditions. This may increase cell retention in-vivo leading to a decellularized cardiac allograft repopulated with functional autologous cells from the recipient. / Experimental Surgery
3

Creation of an optimized acellular scaffold for improved vascular engineering

Nagao, Ryan Joseph 14 July 2014 (has links)
Engineering a complex tissue that exceeds 100-200 [mu]m requires a vascular connection. Methods to enhance vascularization include the delivery of angiogenic factors, and the use of scaffolds that encourage vascular ingrowth. However, these techniques rely on the host to vascularize the construct upon implantation, which is often too slow to provide nutrients to the entire construct. Hence, recent research has focused on creating de novo vascular networks prior to implantation. Such technologies would enable faster anastomosis with the host vascular system, as well as fully perfused constructs that can increase cell viability. Many techniques have been investigated to create de novo vascular networks with varying levels of success. Our approach was to utilize native vascular extracellular matrix (ECM) obtained from decellularizing highly vascularized tissue as a substrate for re-endothelialization and thus to create a three-dimensional vascular bed for ultimate use with various implant and tissue engineering applications. We have demonstrated a method of chemical decellularization that effectively removes cellular material while leaving behind an organized patent vascular network down to the capillary scale. Standard histological methods, DNA quantification, as well as vascular corrosion casting demonstrated this efficacy. Subsequent subcutaneous implantation then explantation of the scaffold at 7 and 28 days was used to assess the immunogenicity of the graft by analyzing the presence of immune cells. This scaffold was then re-endothelialized with human dermal microvascular endothelial cells (HDMECs) and conditioned with peristaltic flow for 60 hours to help improve vascular patency. Cellular distribution was determined qualitatively by first incubating the HDMECs with gold nanotracers, then imaging their presence upon implantation through ultrasound-guided photoacoustic (US/PA) imaging. Following the culture process, the scaffolds were analyzed for vascular patency through vascular corrosion casting, and cellular phenotype through histological methods---demonstrating a decrease in vascular damage. The re-endothelialized scaffolds were then assessed for functional vascular performance by perfusing whole blood through them. Results demonstrated better blood clearance in re-endothelialized scaffolds compared to scaffolds without cells. These results point to the ability of the optimized acellular (OA) scaffold to be used in future experiments focused on vascular and tissue engineering. / text
4

Nanoscale Feature Composite: An Ensemble Surface for Enhancing Cardiovascular Implant Endothelialization

Tran, Phat L. January 2011 (has links)
The establishment and maintenance of functional endothelial cells (ECs) on an engineered surface is central to tissue engineering. As the field advances, the role of cellular mechanisms, particularly the adhesive interaction between the surface of implantable devices and biological systems, becomes more relevant in both research and clinical practice. Knowledge of these interactions can address many fundamental biological questions and would provide key design parameters for medical implants. It has been shown that EC functionality and adhesivity, crucial for the re-endothelialization process, can be induced by nanotopographical modification. Therefore, the goal of this dissertation research was to develop an ensemble surface composing of nanoscale features for the enhancement of endothelial cell adhesion. Without adhesion, subsequent vital mechanism involved in cell alignment, elongation or spreading, proliferation, migration, and ECM proteins deposition will not occur.Experiments in support of this goal were broken down into three specific aims. The first aim was to characterize and develop a size-dependent self-assembly (SDSA) nanoarray of Octamer transcription factor 4 as a demonstration to the fabrication of nanoscale feature surface. This nanoparticle array platform was a pilot studied for the second aim, which was the development of an ensemble surface of nanoscale features for endothelial cell adhesion. The third aim was to evaluate and assess EC response to the ensemble surface.Hence, we developed an ensemble surface composed of nanoscale features and adhesive elements for EC adhesivity. By using shear stress as a detachment force, we demonstrated greater cell retention by the ensemble surface than uniform controls. Adhesive interactions and cellular migration through integrin expressions, which are critical to tissue development and wound healing process was also observed. Furthermore, cell viability was relatively sustainable, as indicated by the low expression of apoptotic signaling molecules. The findings presented within this dissertation research can be applicable to blood-contact medical implants and possess the potential for future clinical translation.
5

Enhanced Biocompatibility of NiTi (Nitinol) Via Surface Treatment and Alloying

Haider, Waseem 22 March 2010 (has links)
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.
6

Establishment of practical recellularized liver graft for blood perfusion using primary rat hepatocytes and liver sinusoidal endothelial cells / ラット初代肝細胞と類洞内皮細胞を用いた、血液灌流を目的とする実践的再細胞化肝臓の構築

Kojima, Hidenobu 23 July 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21297号 / 医博第4386号 / 新制||医||1030(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 妹尾 浩, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
7

Multifonctionnalisation de surface polymère pour le recrutement, l’adhésion et la différenciation des progéniteurs endothéliaux / Functionalization of polymers surfaces with innovatives active principles to induce adhesion and differentiation of endothelial progenitors

Royer, Caroline 01 October 2018 (has links)
Les maladies cardiovasculaires sont l’une des principale causes de mortalité dans le monde, engendrant le décès de plus de 17 millions de personnes par an. Ce chiffre éloquent augmentera jusqu’à atteindre selon l’OMS 23,4 millions de décès en 2030. Ces maladies sont associées à un rétrécissement de la lumière des vaisseaux sanguins qui peut entrainer une occlusion partielle ou complète du vaisseau. Le traitement le plus souvent utilisé est un traitement chirurgical visant à créer un pont qui va contourner la section obstruée, ou une section lésée.Actuellement, les conduits les plus utilisés pour les greffes sont les vaisseaux autologues, à savoir la veine saphène ou l’artère thoracique interne. Seulement, ces substituts ne peuvent être utilisés en remplacement que s’ils sont sains. L’alternative aux vaisseaux autologue est l’utilisation de substituts synthétiques. Due à un certain manque de biocompatibilité de ces greffons synthétiques, après quelques années seulement, un phénomène de thrombose s’installe, en cause ; l’absence de cellules endothéliales (CEs) qui recouvrent l’intérieur du substitut.Le point clé réside ici dans la fabrication d’un matériau capable de fournir au CEs un environnement favorable à leur adhésion et leur prolifération pour permettre la génération d’un endothélium à l’intérieur d’un substitut synthétique. In vivo, les cellules capables de coloniser de tels matériaux sont les cellules progénitrices endothéliales, ces cellules sont capables de se différencier en cellules endothéliales matures et possèdent une capacité de prolifération supérieure aux cellules matures. Elles sont capables de réparer les vaisseaux et pourront donc être ciblées afin d’être recrutées in situ et ainsi endothélialiser le biomatériau.C’est dans ce contexte que nous avons choisi de modifier de façon chimique la surface d’un matériau model, un film de PET avec quatre principes actifs innovants sélectionnés pour leur capacité à induire l’adhésion des cellules ou leur différentiation pour permettre la régénération d’un endothélium à la surface du matériau.Ce projet a permis dans un premier temps de mettre au point un protocole pour greffer des principes actifs de façon covalente avec une densité reproductible et de façon microstructurée en utilisant la photolithographie. Ici, les peptides GRGDS et GHM ont été greffés pour améliorer l’adhésion des cellules, le dernier étant spécifique aux cellules endothéliales progénitrices. Le peptide SFLLRN et la sitagliptine ont été greffés pour induire ou accélérer la différenciation des EPCs en CEs matures. Toutes les surfaces ont été caractérisées pour valider le greffage covalent et connaitre la densité de molécules bioactives greffée.D’autre part avec une caractérisation approfondie des EPCs issues du sang de cordon ombilical, certains gènes caractéristiques des cellules souches et endothéliales ont été suivis par immunofluorescence et RT-qPCR pour déterminer leur état de différenciation. Ce travail n’aura été possible qu’après avoir déterminé quels gènes de références nous pouvions utiliser pour étudier le phénotype de trois types cellulaires à savoir, les cellules mononuclées CD34+, les EPCs et des CEs matures (extraites de la veine saphène). [...] En conclusion générale, ce projet prouve que la modification de surfaces des substituts avec des molécules bioactives est indispensable pour rendre le matériau attractif et pour régénérer un endothélium à la surface de celui-ci. Ce travail nous a aidé souligner l’importance de comprendre le comportement des EPCs et leur cinétique de différenciation pour leur utilisation en ingénierie vasculaire. / Cardiovascular disease is one of the leading causes of death in the world, killing more than 17 million people a year. This eloquent figure will increase to 23.4 million deaths in 2030, according to the WHO. These diseases are associated with a narrowing of the lumen of the blood vessels that may cause partial or complete occlusion of the vessel. The treatment most often used is a surgical treatment designed to create a bridge that will bypass the obstructed section or an injured section.Currently, the most used conduits for transplants are autologous vessels, namely the saphenous vein or the internal thoracic artery. Only these substitutes can only be used as a replacement if they are healthy. The alternative to autologous vessels is the use of synthetic substitutes. Due to a certain lack of biocompatibility of these synthetic grafts, after only a few years, a phenomenon of thrombosis sets in; the absence of endothelial cells (ECs) that cover the interior of the substitute.The key point here lies in the manufacture of a material capable of providing the ECs with a favorable environment for their adhesion and proliferation to allow the generation of an endothelium within a synthetic substitute. In vivo, cells capable of colonizing such materials are endothelial progenitor cells, these cells are capable of differentiating into mature endothelial cells and possess a higher proliferation capacity than mature cells. They are able to repair the vessels and can, therefore, be targeted to be recruited in situ and thus endothelialize the biomaterial.It is in this context that we have chosen to chemically modify the surface of a model material, a PET film with four innovative active ingredients selected for their ability to induce cell adhesion or differentiation to allow regeneration. an endothelium on the surface of the material.This project has initially made it possible to develop a protocol for grafting active ingredients covalently with a reproducible density and in a microstructured manner using photolithography. Here, the GRGDS and GHM peptides were grafted to enhance cell adhesion, the latter being specific to endothelial progenitor cells. The SFLLRN peptide and sitagliptin have been grafted to induce or accelerate the differentiation of EPCs into mature ECs. All surfaces have been characterized to validate covalent grafting and to know the density of grafted bioactive molecules.On the other hand, with a thorough characterization of EPCs from umbilical cord blood, some characteristic genes of stem and endothelial cells were followed by immunofluorescence and RT-qPCR to determine their state of differentiation. This work will have been possible only after determining which reference genes we could use to study the phenotype of three cell types namely, CD34 + mononuclear cells, EPCs and mature ECs (saphenous vein extract). [...] As a general conclusion, this project proves that surface modification of substitutes with bioactive molecules is essential to make the material attractive and to regenerate an endothelium on the surface of it. This work has helped us emphasize the importance of understanding the behavior of EPCs and their kinetics of differentiation for their use in vascular engineering.
8

Multifunctional Biomimetic Modifications to Address Endothelialization and Intimal Hyperplasia in Vascular Grafts

Bastijanic, Jennifer M. 03 June 2015 (has links)
No description available.
9

Optimisation de la structure textile des prothèses vasculaires pour un développement en monocouche des cellules endotheliales / Vascular textile prostheses optimization for an endothelial cells monolayer devlopment

François, Sébastien 07 December 2009 (has links)
Les prothèses vasculaires textiles en polyéthylène téréphtalate (PET) présentent souvent des occlusions après implantation pour les petits diamètres (6-8mm) car la surface des prothèses est peu hémocompatible. Or, l'hémocompatibilité des prothèses serait largement améliorée si ces dernières se recouvraient d'une couche de cellules endothéliales qui tapissent naturellement les vaisseaux sanguins. Ce projet vise à mettre en évidence que les textiles bruts ne sont pas un support viable pour le développement de ces cellules endothéliales, puis propose de remplacer les matrices protéiniques par un recouvrement synthétique. Pour ce faire, de l'acide poly-L-lactique (PLA) solubilisé a été filé sous forme de nanofibres déposées sur la surface luminale de la prothèse. L'étirage par jet d'air a été caractérisé selon un modèle plan, puis adapté à la fon11e tubulaire des prothèses. Les nanofibres ont été évaluées sur le plan de la cytocompatibilité, de l'adhérence et de la prolifération avec un modèle de cellules endothéliales animales. Ce travail vise aussi à optimiser l'adhérence de ces fibres sur le PET par l'emploi d'une technique de modification de surface par plasma. Les résultats montrent qu'il est possible de produire des nanofibres de PLA et de contrôler leur diamètre, et de sceller la paroi de la prothèse textile. Enfin, les cellules endothéliales prolifèrent en monocouche sur des prothèses recouve1tes de nanofibres. Il est possible d'optimiser l'adhérence des nanofibres sur le PET avec un traitement par plasma. En conclusion nous avons proposé une alternative à l'enduction traditionnelle des prothèses permettant la prolifération en monocouche des cellules endothéliales. / Textile vascular prostheses show poor patency rate for smaller diameter grafts (6-8mm). Mainly due to thrombosis or hyperplasia, graft failures can be explained by meagre hemocompatibility. Lack of neoendothelialization of the inner wall of the graft can be one reason explaining this poor hemocompatibility, This project aimed to prove that bare textiles are not a good support to stand endothelial cells' proliferation. Poly(L-latic) acid was therefore chosen to replace protein coating by being formed as a nanofibres mesh on the PET textile prostheses luminal surface. Air jet spinning process was first evaluated in a basic planar model to determined optimal parameters for nanofibres production. Endothelial cells compatibility, adhesion and proliferation were tested. Then air jet spinning was dedicated to tubular shape of textile vascular prostheses. Nanofibres mesh were analysed for chemical and physical properties, and covered graft were tested for water permeability. Lastly, atmospheric pressure plasma treatment was performed to optimize PLLA nanofibres adhesion on PET. Results showed that nanofibre diameters were controlled by polymer concentration. Nanofibre cristallinities depend of spinning parameters. Air jet spinning allows quick covering of textile surfaces with a dense net of nanofibre scelling the inner wall of the prosthesis, even in tubular samples. Moreover, endothelial ceIls show monolayer proliferation on these nanofibres. Finally, Polylactic acid adhesion on PET was optimized with atmospheric pressure plasma. In conclusion, we bring a new solution to cover inner wall of prostheses, allowing a monolayer proliferation of endothelial cells.
10

Incorporation of recombinant fibronectin into genetically engineered elastin-based polymers

Balderrama, Fanor Alberto 17 November 2009 (has links)
Cardiovascular disease is the main cause of death in the United States. Many of these conditions require the grafting or bypassing of compromised blood vessels. To this effect, biological vascular grafts (autografts and allografts) are the first line of action. However, when the patient lacks vasculature suitable for grafting use, several synthetic grafting options are available. The search for an inert biomaterial for vascular grafts has proven to be unsuccessful. This makes the interaction taking place on the blood-biomaterial interface critical for the success of the grafts. This thesis introduces a new bio-inspired approach to tackle the mechanical and biological challenges of vascular material design. The hypothesis of this research is that recombinant fibronectin protein can be stably incorporated onto elastin-mimetic polymers to increase endothelialization. Recombinant elastin, designed to recreate the mechanical properties of natural elastin as a candidate material for vascular graft fabrication, was used as a model surface. Recombinant fibronectin-functionalized elastin-mimetic polymer displayed significant improvement in cell adhesion. Quantification of surface bound recombinant fibronectin verified the concentration dependence of this cell adhesive behavior. Modified elastin-mimetic polymer also demonstrated an enhanced ability to support endothelial cell proliferation. Furthermore, the stability of recombinant fibronectin-modified polymers was assessed. These studies provide the foundation for fabricating elastin-mimetic vascular grafts with improved endothelialization and subsequent biological performance.

Page generated in 0.0905 seconds