The distributed and privacy sensitive nature of cellular networks make them strong candidates for optimization using Federated Learning, but this exposes them to a problem inherent to the learning paradigm: performance inequality due to heterogeneous client data distributions. The prevailing approach of enforcing uniform client performance ignores client-specific performance limitations due to different levels of irreducible uncertainty present in their data, resulting in deteriorated network performance. To address this issue, this thesis introduces two novel federated algorithms designed to enhance learning efficiency and ensure fairness in the presence of heteroscedastic noise, reflecting the distributive justice principles of utilitarianism and equality. Under these circumstances, the proposed algorithms are shown to significantly improve overall performance and performance fairness. The deployment of these algorithms promises a dual benefit: enhancement in network performance and a fairer distribution of service quality for end users.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-531747 |
Date | January 2024 |
Creators | Welander, Andreas |
Publisher | Uppsala universitet, Institutionen för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0103 seconds