Nous étudions des fluctuations qui sont omniprésentes dans des collisions entre particules aux hautes énergies. Ces fluctuations peuvent être de nature classique ou quantique et nous allons considérer ces deux cas. D'abord, nous étudions les fluctuations quantiques qui sont présentes dans des collisions entre protons. Celles-ci sont calculables en théorie quantique des champs, et nous allons nous concentrer sur une certaine classe de diagrammes dans ce cadre. Dans un second temps nous allons étudier des fluctuations qui sont présentes dans des collisions entre particules plus lourdes que le proton. Celles-ci sont décrites par les lois quantiques de la nature qui donnent les positions des nucléons dans le noyau, ou bien des fluctuations classiques, d'origine thermique, qui affectent l'évolution hydrodynamique du milieu produit dans une collision. Les fluctuations dans des collisions entre protons peuvent être calculées analytiquement jusqu'à un certain ordre en théorie quantique des champs. Nous allons nous concentrer sur des diagrammes à une boucle, d'une topologie donnée. Ces diagrammes aux boucles donnent des intégrales, qui typiquement sont difficiles à calculer. Nous allons démontrer comment des outils des mathématiques modernes peuvent être utilisés pour faciliter leur évaluation. En particulier, nous allons étudier des relations entre des coupures d'un diagramme, la discontinuité à travers d'un branchement et le coproduit. Nous allons démontrer comment l'intégrale originale peut être reconstruit à partir de l'information contenue dans le coproduit. Nous nous attendons à ce que ces méthodes seront utiles pour le calcul des diagrammes avec des topologies plus difficiles et ainsi aident au calcul des nouvelles amplitudes de diffusion. A la fin, nous étudions les deux types de fluctuations qui ont lieu dans des collisions entre ions lourds. Celles-ci sont liées soit à l'état initial de la matière, soit à l'état intermédiaire produit dans une telle collision. Les fluctuations de l'état initial ont été mesurées expérimentalement, et on voit qu'elles donnent lieu à des non-Gaussianités dans le spectre final de particules. Nous allons démontrer comment ces non-Gaussianités peuvent être comprises comme des positions et des énergies d'interaction aléatoires des 'sources' dans les noyaux entrant en collision. En plus, nous étudions le bruit hydrodynamique dans le milieu produit juste après une collision. Le comportement de ce milieu est celui d'un fluide à basse viscosité. / We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of `sources' in the colliding nuclei. Furthermore, we investigate the effect of hydrodynamical noise in the evolution of the medium produced just after a collision. This medium behaves like a fluid with a very low viscosity, and so the corresponding evolution is hydrodynamical.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLS155 |
Date | 20 June 2016 |
Creators | Grönqvist, Hanna |
Contributors | Université Paris-Saclay (ComUE), Ollitrault, Jean-Yves, Britto, Ruth |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.003 seconds