• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strange pariticle production at the CERN SPS Collider

Ovens, J. E. V. January 1986 (has links)
No description available.
2

Global Conservation Laws and Femtoscopy at RHIC

Chajȩcki, Zbigniew 24 September 2009 (has links)
No description available.
3

Model predictions of turbulent gas-particle shear flows

Strömgren, Tobias January 2010 (has links)
A turbulent two-phase flow model using kinetic theory of granularflows for the particle phase is developed and implmented in afinite element code. The model can be used for engineeringapplications. However, in this thesis it is used to investigateturbulent gas-particle flows through numerical simulations.  The feedback from the particles on the turbulence and the meanflow of the gas in a vertical channel flow is studied. In particular,the influence of the particle response time, particle volumefraction and particle diameter on the preferential concentration ofthe particles near the walls, caused by the turbophoretic effect isexplored. The study shows that when particle feedback is includedthe accumulation of particles near the walls decreases. It is also foundthat even at low volume fractions particles can have a significant impacton the turbulence and the mean flow of the gas. The effect of particles on a developing turbulent vertical upward pipeflow is also studied. The development length is found to substantiallyincrease compared to an unladen flow. To understand what governs thedevelopment length a simple estimation was derived, showing that itincreases with decreasing particle diameters in accordance with themodel simulations. A model for the fluctuating particle velocity in turbulentgas-particle flow is derived using a set of stochastic differentialequations taking into account particle-particle collisions. Themodel shows that the particle fluctuating velocity increases whenparticle-particle collisions become more important and that increasingparticle response times reduces the fluctuating velocity. The modelcan also be used for an expansion of the deterministic model for theparticle kinetic energy. / QC20100726
4

Contact electrification and charge separation in volcanic plumes

Lindle, Molly Eileen 05 April 2011 (has links)
Volcanogenic lightning has a long documented history in the scientific field, though its origins are still poorly understood. The interactions leading to electrification of ash plumes is essentially a function of the microphysics controlling and affecting ash particle collisions. This thesis presents measurements made on charged particle interactions in a fluidized bed, with large-scale applications to the phenomenon of volcanogenic lightning and charged particle dynamics in volcanic plumes. Using a fluidized bed of ash samples taken from Ecuador's Volcán Tungurahua, particles are introduced to a collisional environment, where they acquire an associated polarity. A charged copper plate is used to collect particles of a given polarity, and particle size distributions are obtained for different weight fractions of the ash. It is observed that relatively smaller particles acquire a net negative charge, while larger particles in the sample charge positively. This is a well-documented occurrence with perfectly spherical, chemically identical samples, but this work represents one of the first applications of the principle to volcanic ash. Image analysis is preformed to determine the size distribution associated with specific polarities, and the associated minimum charge on each particle is calculated based on the plate collection height and particle size. We also present results that demonstrate the relationship between particle collisions and the amount of charge exchanged. Using techniques developed to examine the collision rate within a flow, combined with the charging rates determined from this experiment, we determine a maximum charge exchange rate of 1.28±0.23 electrons transferred per collision.
5

Euler-Lagrange Modeling of Vortex Interaction with a Particle-Laden Turbulent Boundary Layer

January 2011 (has links)
abstract: Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than for the fluid and is sensitive to the particle response time. The effects of inter-particle collisions are relatively strong and apparent throughout the flow, being most effective in the boundary layer. Gravitational settling increases the particle concentration near the wall and consequently increase inter-particle collisions. / Dissertation/Thesis / M.S. Aerospace Engineering 2011
6

Aplicação de um jogo digital e análise de conceitos da teoria cinética dos gases / Application of a digital game and analysis of kinetic concepts of gases theory

Figueiredo, Márcia Camilo [UNESP] 04 March 2016 (has links)
Submitted by MÁRCIA CAMILO FIGUEIREDO null (marciacamilof@gmail.com) on 2016-04-28T13:27:25Z No. of bitstreams: 1 TESE_UNESP_SP_BAURU_MARCIA_CAMILO_FIGUEIREDO_DEFESA_04_03_2016.pdf: 8905822 bytes, checksum: 7ea8b928aabd49b34c0aefc4bdbe536f (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-02T12:40:38Z (GMT) No. of bitstreams: 1 figueiredo_mc_dr_bauru.pdf: 8905822 bytes, checksum: 7ea8b928aabd49b34c0aefc4bdbe536f (MD5) / Made available in DSpace on 2016-05-02T12:40:38Z (GMT). No. of bitstreams: 1 figueiredo_mc_dr_bauru.pdf: 8905822 bytes, checksum: 7ea8b928aabd49b34c0aefc4bdbe536f (MD5) Previous issue date: 2016-03-04 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná (FAADCT/PR) / Esta pesquisa objetivou investigar se licenciandos em química enunciam e compreendem os conceitos de aleatoriedade e irreversibilidade, presentes na Teoria Cinética dos Gases, por meio de etapas construídas para um jogo digital e da sua aplicação após finalizado. Participaram da pesquisa vinte e um acadêmicos do curso de licenciatura em química de uma universidade tecnológica federal no Paraná, separados em: grupo 01, 02 e 03. Para a coleta de dados, cada grupo, em determinados momentos, respondeu questionários, elaborou desenhos e participou de entrevistas semiestruturadas. O desenvolvimento da pesquisa foi orientado pela abordagem qualitativa e por alguns estudos realizados por Piaget. Para tratar e analisar os dados, optamos pelos princípios da análise de conteúdo. A partir do conteúdo dos desenhos construídos nas etapas do jogo digital, foi possível constatar que, os participantes do grupo 01 e 02 buscaram ilustrar em alguma etapa do jogo, uma aproximação de distribuição homogênea do sistema. Nos desenhos dos níveis, verificamos que a maioria (quatorze) dos participantes levou em consideração as experiências obtidas durante o jogo, porque mudaram a maneira de prever em algum nível, as trajetórias de partículas no sistema; dentre os vinte e um sujeitos, apenas oito ilustraram nos quatro níveis do jogo, as primeiras previsões de colisões do lado esquerdo, alcançando o padrão de análise estabelecido. No conteúdo obtido nos discursos dos participantes, referente ao conceito de irreversibilidade, foi possível verificar que este conhecimento não está bem construído nas estruturas cognitivas dos participantes do grupo 01 e 02, porque cinco apresentaram discurso não elucidativo nas quatro etapas do jogo e dois não souberam elucidar o conceito investigado em três etapas. Com relação ao conceito de aleatoriedade, verificamos que os participantes utilizaram palavras diferentes em cada contexto de aplicação das etapas e dos níveis do jogo digital, apresentando distintos discursos, como de gênero científico, próximo do gênero científico, de senso comum, não elucidativo e elucidativo ao jogo. Depreende-se que os recursos didáticos digitais utilizados podem proporcionar aos estudantes compreenderem e apreenderem conteúdos de caráter microscópico e submicroscópico. Portanto, as etapas e os níveis do jogo digital poderão contribuir para que os sujeitos apreendam cientificamente os conceitos da teoria cinética dos gases, como também em outras áreas do conhecimento. / This research aimed to investigate whether licentiate in chemistry enunciate and understand the concepts of randomness and irreversibility present in Kinetic Theory of Gases, through the construction of steps of a digital game and its application after finalized. The participants were twenty-one academics in chemistry degree course of a federal technological university in Paraná, separated into: Group 01, 02 and 03. For the collection of data, each group, at certain times, answered questionnaires, prepared drawings and participated in semi-structured interviews. The development of the research was guided by a qualitative approach and some studies conducted by trough the ideas of Piaget. To process and analyze the data, we chose the principles of content analysis. From the content of the drawings built on the steps of digital game, it was found that the participants of group 01 and 02 sought to illustrate in some stage of the game, a homogeneous distribution approach of the system. In the drawings levels, we found that the majority (fourteen) of the participants took into account the experiences gained during the game because it changed the way to predict to some degree, the particle trajectories in the system; among the twenty-one subjects, only eight illustrated in the four levels of the game, the first predictions of collisions on the left side, reaching the established pattern analysis. The content obtained in the speeches of the participants, referring to the concept of irreversibility, it was found that this knowledge is not well built in cognitive structures of group members 01 and 02, because five had not been elucidated speech in the four stages of the game and two did not know how to elucidate the concept investigated in the three steps. Regarding the concept of randomness, we found that participants used different words in each application context of the stages and the digital game levels, with different speeches, as scientific genre, close to the scientific genus, common sense, not enlightening and instructive the game. It appears that digital teaching resources used can provide students understand and grasp microscopic and submicroscopic character content. Therefore, the steps and levels of the digital game can contribute to the subject scientifically seize the concepts of kinetic theory of gases, as well as in other areas of knowledge.
7

Fluctuations in High-Energy Particle Collisions / Fluctuations dans des collisions entre particules aux hautes énergies

Grönqvist, Hanna 20 June 2016 (has links)
Nous étudions des fluctuations qui sont omniprésentes dans des collisions entre particules aux hautes énergies. Ces fluctuations peuvent être de nature classique ou quantique et nous allons considérer ces deux cas. D'abord, nous étudions les fluctuations quantiques qui sont présentes dans des collisions entre protons. Celles-ci sont calculables en théorie quantique des champs, et nous allons nous concentrer sur une certaine classe de diagrammes dans ce cadre. Dans un second temps nous allons étudier des fluctuations qui sont présentes dans des collisions entre particules plus lourdes que le proton. Celles-ci sont décrites par les lois quantiques de la nature qui donnent les positions des nucléons dans le noyau, ou bien des fluctuations classiques, d'origine thermique, qui affectent l'évolution hydrodynamique du milieu produit dans une collision. Les fluctuations dans des collisions entre protons peuvent être calculées analytiquement jusqu'à un certain ordre en théorie quantique des champs. Nous allons nous concentrer sur des diagrammes à une boucle, d'une topologie donnée. Ces diagrammes aux boucles donnent des intégrales, qui typiquement sont difficiles à calculer. Nous allons démontrer comment des outils des mathématiques modernes peuvent être utilisés pour faciliter leur évaluation. En particulier, nous allons étudier des relations entre des coupures d'un diagramme, la discontinuité à travers d'un branchement et le coproduit. Nous allons démontrer comment l'intégrale originale peut être reconstruit à partir de l'information contenue dans le coproduit. Nous nous attendons à ce que ces méthodes seront utiles pour le calcul des diagrammes avec des topologies plus difficiles et ainsi aident au calcul des nouvelles amplitudes de diffusion. A la fin, nous étudions les deux types de fluctuations qui ont lieu dans des collisions entre ions lourds. Celles-ci sont liées soit à l'état initial de la matière, soit à l'état intermédiaire produit dans une telle collision. Les fluctuations de l'état initial ont été mesurées expérimentalement, et on voit qu'elles donnent lieu à des non-Gaussianités dans le spectre final de particules. Nous allons démontrer comment ces non-Gaussianités peuvent être comprises comme des positions et des énergies d'interaction aléatoires des 'sources' dans les noyaux entrant en collision. En plus, nous étudions le bruit hydrodynamique dans le milieu produit juste après une collision. Le comportement de ce milieu est celui d'un fluide à basse viscosité. / We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of `sources' in the colliding nuclei. Furthermore, we investigate the effect of hydrodynamical noise in the evolution of the medium produced just after a collision. This medium behaves like a fluid with a very low viscosity, and so the corresponding evolution is hydrodynamical.

Page generated in 0.1132 seconds