No / A novel multi-standard dual-wide band filter with a compact size of only 8.8 mm by 16.8mm is designed and developed for transceiver devices. The proposed filter has a fundamental bandwidth of 1.6GHz with fractional bandwidth (FBW) of 29.7% centered at the 5.4GHz band, and second bandwidth of 300.0MHz with FBW of 3.6% centered at the 8.15GHz band. The basic dual-wide bandwidth is attributed to the interaction of the novel modified polygon pair and upper stub loaded stepped impedance resonator. Moreover, the added down stub loaded stepped impedance resonator (SLSIR) further enhances the pass band performance by widening the bandwidth and optimizing reflection coefficient performance considerably. To validate the proposed ideas, the multi-standard filter is designed and simulated by Ansoft HFSS software. The simulated results agree well with the theory predictions. The featured broad bandwidths over two frequency bands and the miniaturized size of the proposed filter make it very promising for applications in future multi-standard wireless communication.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/9235 |
Date | January 2015 |
Creators | Tu, Yuxiang X., Ali, Ammar H., Elmegri, Fauzi, Abousitta, M., Abd-Alhameed, Raed, Hussaini, Abubakar S., Elfergani, Issa T., Rodriguez, Jonathan, Atiah, A.S. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Conference paper, No full-text in the repository |
Page generated in 0.0017 seconds