• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear transceivers for MIMO relays

Shang, Cheng Yu Andy January 2014 (has links)
Relays can be used in wireless communication systems to provide cell coverage extension, reduce coverage holes and increase throughput. Full duplex (FD) relays, which transmit and receive in the same time slot, can have a higher transmission rate compared with half duplex (HD) relays. However, FD relays suffer from self interference (SI) problems, which are caused by the transmitted relay signal being received by the relay receiver. This can reduce the performance of FD relays. In the literature, the SI channel is commonly nulled and removed as it simplifies the problem considerably. In practice, complete nulling is impossible due to channel estimation errors. Therefore, in this thesis, we consider the leakage of the SI from the FD relay. Our goal is to reduce the SI and increase the signal to noise ratio (SNR) of the relay system. Hence, we propose different precoder and weight vector designs. These designs may increase the end to end (e2e) signal to interference and noise ratio (SINR) at the destination. Here, a precoder is multiplied to a signal before transmission and a weight vector is multiplied to the received signal after reception. Initially, we consider an academic example where it uses a two path FD multiple input and multiple output (MIMO) system. The analysis of the SINR with the implementation of precoders and weight vectors shows that the SI component has the same underlying signal as the source signal when a relay processing delay is not being considered. Hence, to simulate the SI problem more realistically, we alter our relay design and focus on a one path FD MIMO relay system with a relay processing delay. For the implementation of precoders and weight vectors, choosing the optimal scheme is numerically challenging. Thus, we design the precoders and weight vectors using ad-hoc and near-optimal schemes. The ad-hoc schemes for the precoders are singular value decomposition (SVD), minimising the signal to leakage plus noise ratio (SLNR) using the Rayleigh Ritz (RR) method and zero forcing (ZF). The ad-hoc schemes for the weight vectors are SVD, minimum mean squared error (MMSE) and ZF. The near-optimal scheme uses an iterative RR method to compute the source precoder and destination weight vector and the relay precoder and weight vector are computed using the ad-hoc methods which provide the best performance. The average power and the instantaneous power normalisations are the two methods to constrain the relay precoder power. The average power normalisation method uses a novel closed form covariance matrix with an optimisation approach to constrain the relay precoder. This closed form covariance matrix is mathematically derived using matrix vectorization techniques. For the instantaneous power normalisation method, the constraint process does not require an optimisation approach. However, using this method the e2e SINR is difficult to calculate, therefore we use symbol error rate (SER) as a measure of performance. The results from the different precoder and weight vector designs suggest that reducing the SI using the relay weight vector instead of the relay precoder results in a higher e2e SINR. Consequently, to increase the e2e SINR, performing complicated processing at the relay receiver is more effective than at the relay transmitter.
2

A novel multi-standard dual-wide band polygon SLSIR filter

Tu, Yuxiang X., Ali, Ammar H., Elmegri, Fauzi, Abousitta, M., Abd-Alhameed, Raed, Hussaini, Abubakar S., Elfergani, Issa T., Rodriguez, Jonathan, Atiah, A.S. January 2015 (has links)
No / A novel multi-standard dual-wide band filter with a compact size of only 8.8 mm by 16.8mm is designed and developed for transceiver devices. The proposed filter has a fundamental bandwidth of 1.6GHz with fractional bandwidth (FBW) of 29.7% centered at the 5.4GHz band, and second bandwidth of 300.0MHz with FBW of 3.6% centered at the 8.15GHz band. The basic dual-wide bandwidth is attributed to the interaction of the novel modified polygon pair and upper stub loaded stepped impedance resonator. Moreover, the added down stub loaded stepped impedance resonator (SLSIR) further enhances the pass band performance by widening the bandwidth and optimizing reflection coefficient performance considerably. To validate the proposed ideas, the multi-standard filter is designed and simulated by Ansoft HFSS software. The simulated results agree well with the theory predictions. The featured broad bandwidths over two frequency bands and the miniaturized size of the proposed filter make it very promising for applications in future multi-standard wireless communication.

Page generated in 0.0668 seconds