No / Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Sustained activation of nuclear transcription factor κB (NF-κB) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-κB signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNFα, 150 ng/ml) increased NF-κB-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative IκBα construct. In addition, TNFα increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-κB activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((−)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1–1 μM) for 18 h. None of the flavonoids modulated constitutive or TNFα-induced NF-κB activity. Therefore, we conclude that NF-κB signalling in astrocytes is not a major target for flavonoids.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/7804 |
Date | 02 1900 |
Creators | Spilsbury, A., Vauzour, D., Spencer, J.P.E., Rattray, Marcus |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, No full-text in the repository |
Page generated in 0.0017 seconds