Return to search

Growth and Characterization of Sr2RuO4 and Sr2RhO4 / Growth and Characterization of Strontium Ruthenate (214) and Strontium Rhodate (214)

With reference to some figures reproduced in this thesis: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society." / We report on the growth and characterization of strontium ruthenate (214) (Sr2RuO4) and strontium rhodate (214) (Sr2RhO4) in efforts to test their agreement with Landau-Fermi liquid theory using optical measurements. We begin by reviewing the theory of Landau-Fermi liquids and the frequency and temperature dependent conductivities. We review existing work on both Sr2RuO4 and Sr2RhO4 including evidence of agreement with Landau-Fermi liquid theory. We also describe optical floating zone crystal growth and the exact procedures we used to prepare samples of both Sr2RuO4 and Sr2RhO4 via optical floating zone. The resulting Sr2RuO4 crystals were characterized using AC susceptibility measurements and Sr2RhO4 by powder diffraction, single crystal diffraction, and SQUID magnetization measurements. Finally, early optical reflectivity measurements at low temperatures are presented. / Thesis / Master of Science (MSc) / Crystals of Sr2RuO4 and Sr2Rho4 were grown by the author in an effort to study changes of their resistivity with varying temperature and frequency at low temperatures. The crystals were characterized using a variety of x-ray and other techniques, so as to measure their purity. Past work on these materials is discussed and analyzed. Preliminary measurements of the resistivity are presented.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/15412
Date January 2014
CreatorsMortimer, Kevin
ContributorsTimusk, Thomas, Physics
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds