1 |
Growth, characterization and measurement of epitaxial Sr2RuO4 thin filmsCao, Jing January 2018 (has links)
In this thesis, the growth of c-axis oriented Sr2RuO4 thin films using pulsed laser deposition and their electrical transport properties are systematically discussed. The deposition and optimization process involved several progressive steps. Specifically, the first focus was on the Sr2RuO4 phase optimization in films grown on lattice-matched (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. Film composition was found to be greatly influenced by changes in oxygen pressure, substrate temperature, target to substrate distance, and laser fluence. High oxygen pressure, low substrate temperature, large target to substrate distance, and high laser fluence increased the tendency to form the Ru-rich SrRuO3 phase in the film. The second focus was on improving the electrical transport properties of Sr2RuO4 from metal-insulating to fully metallic and eventually to superconducting behavior. It was observed that the full width at half maximum (FWHM) of the Sr2RuO4 (006) rocking curves in x-ray diffraction (XRD) scan was related to the quality of the electrical transport response. By fine tuning the deposition parameters to obtain low FWHM values, the electrical transport behavior of the Sr2RuO4 thin films was consistently improved from metal-insulating to fully metallic. In addition, localized superconductivity with enhanced superconducting transition temperature Tc onset was also observed among the fully metallic film. An in-depth study of the XRD results in fully metallic films indicated the existence of defects (intergrowths) along the c-axis direction, which caused localized c-axis tensile strain. The existence of structural defects within the film was likely to be responsible for the fact that only localized superconductivity was observed in the films. Furthermore, the enhanced superconducting transition temperature (Tc) relative to bulk single crystals is likely to be associated to localized strain in the film. Finally, Nb doped SrTiO3 substrates were used to achieve better quality growth of partial superconducting Sr2RuO4 thin films. Sr2RuO4 films grown on Nb doped SrTiO3 substrates had smaller FWHM values and lower level of c-axis tensile strain compared to those on LSAT substrates. Various partially superconducting films with different thicknesses and different superconducting Tc values are presented, and correlations between fabrication process, film crystalline quality as well as transport properties are discussed. This work provides better understanding of the importance of maximizing crystalline quality by delicate fine tuning of PLD deposition parameters to achieve high quality superconducting films.
|
2 |
Heat capacity measurements of Sr₂RuO₄ under uniaxial stressLi, You-Sheng January 2018 (has links)
The most-discussed pairing symmetry in Sr₂RuO₄ is chiral p-wave, pₓ ± p[sub]y, whose degeneracy is protected by the lattice symmetry. When the lattice symmetry is lowered by the application of a symmetry-breaking field, the degeneracy can be lifted, potentially leading to a splitting of the superconducting transition. To lift the degeneracy, the symmetry breaking field used in this study is uniaxial stress. Uniaxial stress generated by a piezo-electric actuator can continuously tune the electronic structure and in situ lower the tetragonal symmetry in Sr₂RuO₄. Previous studies of magnetic susceptibility and resistivity under uniaxial stress have revealed that there is a strong peak in T[sub]c when the stress is applied along the a-axis of Sr₂RuO₄. In addition, it has been proposed that the peak in T[sub]c coincides with a van Hove singularity in the band structure, and measurements of Hc₂ at the maximum T[sub]c indicate the possibility of an even parity condensate for Sr₂RuO₄ at the peak in Tc. In this thesis, the heat capacity approach is used to study the thermodynamic behavior of Sr₂RuO₄ under uniaxial stress applied along the crystallographic a-axis of Sr₂RuO₄. The first thermodynamic evidence for the peak in T[sub]c is obtained, proving that is a bulk property. However, the experimental data show no clear evidence for splitting of the superconducting transition; only one phase transition can be identified within the experimental resolution. The results impose strong constraints on the existence of a second phase transition, i.e. the size of the second heat capacity jump would be small or the second T[sub]c would have to be very close to the first transition. In addition to these results, I will present heat capacity data from the normal state of Sr₂RuO₄. The experimental results indicate that there is an enhancement of specific heat at the peak in T[sub]c, consistent with the existence of the van Hove singularity. The possibility of even parity superconductivity at the maximum T[sub]c has also been investigated. However, the heat capacity measurements are shown to be relatively insensitive to such a change, so it has not been possible to obtain strong and unambiguous evidence for whether it takes place or not.
|
3 |
Probing Hund’s-Metal Physics through the Hall Effect in Microstructured Sr₂RuO₄ under Uniaxial StressYang, Po-Ya 01 April 2022 (has links)
Uniaxial stress is a powerful technique to tune the electronic structure of very pure materials. The novel piezoelectric-based techniques developed by our group, which allow application of large and homogeneous uniaxial pressure in a continuously-tunable manner, make uniaxial pressure an independent axis in the parameter space for the study of quantum materials. Many exciting experiments have been performed that combine different measurement methods with this uniaxial stress technique in the past few years.
In this thesis, I demonstrate the first electrical transport measurement under uniaxial pressure of a free-standing microstructure single-crystalline sample patterned by focused ion beam (FIB) milling. With the microstructuring technique that I developed, the transport properties transverse to the force direction can be more accurately probed. The ability to resolve the anisotropy introduced by the uniaxial pressure lets us have a better understanding of how the electronic structure of Sr₂RuO₄ changes under uniaxial stress. Moreover, the microstructure technique opens new roads for smaller crystals (∼ 100 µm) to be studied under uniaxial pressure. In addition, higher stresses and better sample homogeneity could be achieved by working with smaller samples.
For Sr₂RuO₄, one of the three Fermi-surface sheets can be driven through a Lifshitz transition by applying uniaxial stress along the [100] direction. Superconductivity and resistivity have been observed to be strongly enhanced at the singularity. In addition, a spin-density wave (SDW) has been observed at stresses beyond the Lifshitz transition.
Measurement of the Hall effect under uniaxial stress allows us to probe Hund’s metal physics in Sr₂RuO₄. The Hall coefficient of unstressed Sr₂RuO₄ goes through two sign reversals, at 30 K and 120 K. Under the Hund’s metal scenario, this temperature dependence has been proposed to result from orbital differentiation of the inelastic scattering rate, which is a key property expected of Hund’s metals. In the present study, it is shown that at a temperature where electron-electron scattering dominates (≳ 5 K), the Hall coefficient becomes less electron-like while approaching the VHS, which is consistent with increased scattering in the d_xy band. Beyond the transition, the Hall coefficient becomes much more electron-like, which is opposite to
expectations from the change in Fermi surface topology, but can be explained by a combination of Hund’s metal physics and strong suppression in the d_xy scattering rate. At very low temperature (0.5 K), the Hall coefficient is essentially unchanged across the Lifshitz transition, despite the change in the Fermi-surface topology.
In contrast to the longitudinal resistivity that has a strong peak at the VHS but does not respond to the SDW, the resistance transverse to the force direction shows a strong response to the SDW, but only a small response at the VHS. In addition, I obtain ρ(T) at the Lifshitz transition below Tc by subtracting off the magnetoresistance and find that T² ln(1/T) fits better than T^3/2, which suggests a saddle point rather than an extended saddle point at the VHS.:1. Introduction to Sr2RuO4
1.1. Normal-State Properties
Van Hove Singularity and Lifshitz Transition in Sr2RuO4
1.2. Hall Effect in Sr2RuO4
Weak-field Hall Coefficient
Experimental Hall Coefficient in Sr2RuO4 and Related Systems
1.3. Hund’s Metal Scenario
Dynamical Mean-Field Theory
Experimental Evidence for Orbital Differentiation in Sr2RuO4
Hall Coefficient of Sr2RuO4 within Hund’s Metal Scenario
1.4 Uniaxial-Pressure Projects on Sr2RuO4
2. Experimental Setup
2.1. Stress and Strain
2.2. Uniaxial Stress Technique
Uniaxial-Stress Cell
Sample Carrier
2.3. Imperfections of the Stress Cells
2.4. Sample Preparation
Needle Sample Preparation
Microstructure Sample Preparation
Comparison of the Two Samples
2.5. Measurement Setup
3He Cryostat
Transport Measurement Setup
3. Hall Coefficient and Resistivity Measurements
3.1. Basics of Resistivity Measurement
Stress Ramps
3.2. Basics of Hall Measurement Setup
Field Dependence of Hall Resistivity
Temperature Dependence of Hall Coefficient
3.3. Stress Ramps under Constant Magnetic Field
3.4. Stress Dependence of Hall Coefficient and Resistivity
3.5. Resistivity Measurements below Tc
3.6. Field Sweeps within the Magnetic Phase
3.7. Summary
4. Measurements Transverse to the Stress Axis
4.1. Setup for Transport Measurements Transverse to the Uniaxial Stress
4.2. Simulations Based on Finite Element Method
4.3. Resistance Measurements Transverse to Applied Stress
4.4. Summary
5. Data Analysis and Discussion
5.1. A Tight-Binding Model under Uniaxial Pressure
5.2. Analysis of Hall Coefficient across the Lifshitz Transition
Hall Coefficient Analysis under the Isotropic-l or Isotropic-τ Approximations
Hall Coefficient Analysis under Hund’s Metal Scenario
5.3. Magnetoresistance Subtraction in Temperature Ramps
5.4. Transport Properties at 5 K
5.5. Summary
6. Conclusions and Outlook
Appendices
A. Si-Gap-Platform Microstructure Project
A.1. Si-Gap Platform
A.2. Sample Preparation with PFIB-Microstructuring
A.3. Microstructure Stress Cells
B. Other results
B.1. Hall Effect from the Hall Pair 2
B.2. Magnetoresistance in Longitudinal and Transverse Configurations
B.3. Toward -1.5 GPa
B.4. Comparison of RH(T) in Sr2RuO4 Compressed along [100] Direction and YBa2Cu3O6.67 Compressed along the b-axis
Bibliography
|
4 |
Cristallogénèse et étude des excitations magnétiques du supraconducteur non conventionnel Sr 2 RuO 4SERVANT, Florence 23 September 2002 (has links) (PDF)
Cette thèse a pour objet l'étude du supraconducteur non conventionnel Sr2RuO4. Dans ce supraconducteur, le mécanisme d'appariement des paires de Cooper ne serait pas dû au couplage électron-phonon mais plutôt lié aux fluctuations de spins, comme dans l' 3 He superfluide. On pense de plus qu'il serait de symétrie p, induite par d'hypothètiques fluctuations ferromagnétiques. Pour attaquer ce problème, la première étape est l'élaboration de monocristaux avec d'excellentes propriétés physico-chimiques. J'en ai synthétisé avec des tailles de l'ordre de quelques cm de long et 4.5 mm de diamètre. Ils ont servi à étudier les excitations magnétiques dans Sr2RuO4 par des mesures de diffusion inélastique des neutrons. Ces mesures ont confirmé que les fluctuations de spin autour du vecteur d'onde Q0 = ( ± 2 pi/3a, ±2pi=3a,0) dominent le spectre des excitations magnétiques aussi bien dans la phase normale que dans la phase supraconductrice. Q0 est un vecteur d'emboîtement de la surface de Fermi. Par l'étude de ces fluctuations le long de l'axe c, nous avons mis en évidence le caractère bidimensionnel des corrélations électroniques dans Sr2RuO4. Des études complémentaires ont permis de montrer que la susceptibilité dynamique est isotrope dans l'espace des spins. Le fait que ces excitations incommensurables dominent et que les fluctuations de spin ferromagnétiques attendues n'aient pas été observées fait reconsidérer l'image simpliste d'une supraconductivité de symétrie p. Des théories récentes proposent un paramètre d'ordre supraconducteur de type f compatible avec ces fluctuations de spin incommensurables. Il n'en reste pas moins que nos résultats ne montrent aucun point commun entre l'état de spin du paramètre d'ordre le plus utilisé (spin dans le plan et d selon l'axe c) et les fluctuations incommensurables de spin observées.
|
5 |
Uniaxial stress technique and investigations into correlated electron systemsBarber, Mark E. January 2017 (has links)
In the repertoire of an experimental condensed matter physicist, the ability to tune continuously through features in the electronic structure and to selectively break point-group symmetries are both valuable techniques. The experimental technique at the heart of this dissertation, uniaxial stress, can do both such things. The thesis will start with a thorough discussion of our new technique, which was continually developed over the course of this work, presenting both its unique capabilities and also some guidance on the best working practices, before moving on to describe results obtained on two different strongly correlated electron materials. The first, Sr2RuO4, is an unconventional superconductor, whose order parameter has long been speculated to be odd-parity. Of interest to us is the close proximity of one of its three Fermi surfaces to a Van Hove singularity (VHs). Our results strongly suggest that we have been able to traverse the VHs, inducing a topological Lifshitz transition. T[sub]c is enhanced by a factor ~2.3 and measurements of H[sub](c2) open the possibility that optimally strained Sr2RuO4 has an even-parity, rather than odd-parity, order parameter. Measurements of the normal state properties show that quasiparticle scattering is increased across all the bands and in all directions, and effects of quantum criticality are observed around the suspected Lifshitz transition. Sr3Ru2O7 has a metamagnetic quantum critical endpoint, which in highly pure samples is masked by a novel phase. Weak in-plane magnetic fields are well-known to induce strong resistive anisotropy in the novel phase, leading to speculation that a spontaneous, electronically driven lowering of symmetry occurs. Using magnetic susceptibility and resistivity measurements we can show that in-plane anisotropic strain also reveals the strong susceptibility to electronic anisotropy. However, the phase diagram that these pressure measurements reveal is consistent only with large but finite susceptibility, and not with spontaneous symmetry reduction.
|
6 |
Superconductivity in Sr2RuO4 micro-rings / Sr2RuO4微小リングにおける超伝導性Yasui, Yuuki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21555号 / 理博第4462号 / 新制||理||1640(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 石田 憲二, 教授 寺嶋 孝仁 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
7 |
Theoretical studies of unconventional superconductivity in Sr2RuO4 and related systemsWang, Xin January 2022 (has links)
In this thesis, we study the unconventional superconductivity in Sr2RuO4 (SRO) and related systems. The superconducting state in SRO remains a puzzle after more than 28 years of study. Early experiments had pointed toward a topological non-trivial time-reversal symmetry breaking (TRSB) chiral p-wave order. This pairing candidate has attracted a large amount of attention, partly in relation to the possibility of topological quantum computation, and has stimulated studies on higher chirality superconducting systems. In the first part of this thesis, we study the spontaneous edge current in chiral d- and f-wave superconductors. We show that these currents, which vanish in the continuum limit at zero temperature, are generally non-vanishing but tiny, compared to the simplest chiral p-wave case. In the presence of strong surface roughness, the direction of the edge current in the chiral d-wave case can be reversed, compared with that of a specular ideal surface with specular scattering. However, it is shown that this current reversal is non-universal beyond the continuum limit.
The chiral p-wave scenario in SRO is overturned by recent Knight shift measurements, highlighting the importance of exploring different pairing symmetries for SRO. Recently, $d_{x^2-y^2} \pm ig_{(x^2-y^2)xy}$, $s' \pm id_{xy}$ and mixed helical p-wave pairings have been proposed as order parameter candidates. However, the stability of these states, especially of the $d_{x^2-y^2} \pm ig$ pairing, remains unclear. In the second part of the thesis, we study the leading superconducting instabilities in SRO in the presence of sizable atomic spin-orbit coupling (SOC), non-local SOC, and non-local interactions. We find that it is difficult to stabilize chiral p-wave pairing in SRO models; this is because, among the triplet p-wave states, the atomic SOC favors helical states over the chiral state. The presence of both d- and g-wave pairings, including a $d_{x^2-y^2} \pm ig$ state, is found when the second nearest neighbor (in-plane) repulsions, together with orbital-anisotropy of the non-local interactions and/or the B2g channel non-local SOC are included. We further analyze the properties, such as nodal structures, in-plane field spin-susceptibility, and spontaneous edge current, of the realized $d_{x^2-y^2} \pm ig$ pairing and find that this state is more compatible with existing experimental measurements than the $s' \pm id_{xy}$ and the mixed helical p-wave proposals. / Dissertation / Doctor of Philosophy (PhD)
|
8 |
Theoretical studies of unconventional superconductivity in Sr2RuO4Huang, Wen January 2016 (has links)
In this thesis we study the edge currents and the multi-band superconductivity in the unconventional superconductor Sr2RuO4.
Numerous measurements have given strong support for a topologically non-trivial time-reversal symmetry breaking chiral p-wave state in this material. However, the spontaneous edge current expected for this order has eluded experimental detection. In this thesis, we present a general theoretical description of the edge currents in chiral superconductors. Our results elucidate the connection between the edge currents and the topological property of the chiral pairing. On this basis, we argue that superconducting gap anisotropy, combined with surface disorder, may provide an explanation for the absence of observable edge currents in Sr2RuO4. In addition, contrary to intuitive expectations, the integrated edge current is found to identically vanish for any non-p-wave chiral superconductor in the continuum limit-- a result which may be connected with the orbital angular momentum problem in chiral superfluids, such as the A phase of He-3. In lattice models, the integrated edge current may not vanish in non-p-wave superconductors but, in general, is substantially smaller compared to that of a simple chiral p-wave.
In a separate study, we investigate the multi-band nature of the superconductivity in Sr2RuO4, via explicit microscopic calculations of the multi-band interactions. Our results indicate comparable pairing correlations on all of the bands and the existence of soft collective phase fluctuations--a Leggett mode. We also examine the possibility of alternative time-reversal symmetry breaking multi-band superconductivity which does not necessarily require chiral p-wave pairing. / Thesis / Doctor of Philosophy (PhD)
|
9 |
Growth and Characterization of Sr2RuO4 and Sr2RhO4 / Growth and Characterization of Strontium Ruthenate (214) and Strontium Rhodate (214)Mortimer, Kevin January 2014 (has links)
With reference to some figures reproduced in this thesis: "Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society." / We report on the growth and characterization of strontium ruthenate (214) (Sr2RuO4) and strontium rhodate (214) (Sr2RhO4) in efforts to test their agreement with Landau-Fermi liquid theory using optical measurements. We begin by reviewing the theory of Landau-Fermi liquids and the frequency and temperature dependent conductivities. We review existing work on both Sr2RuO4 and Sr2RhO4 including evidence of agreement with Landau-Fermi liquid theory. We also describe optical floating zone crystal growth and the exact procedures we used to prepare samples of both Sr2RuO4 and Sr2RhO4 via optical floating zone. The resulting Sr2RuO4 crystals were characterized using AC susceptibility measurements and Sr2RhO4 by powder diffraction, single crystal diffraction, and SQUID magnetization measurements. Finally, early optical reflectivity measurements at low temperatures are presented. / Thesis / Master of Science (MSc) / Crystals of Sr2RuO4 and Sr2Rho4 were grown by the author in an effort to study changes of their resistivity with varying temperature and frequency at low temperatures. The crystals were characterized using a variety of x-ray and other techniques, so as to measure their purity. Past work on these materials is discussed and analyzed. Preliminary measurements of the resistivity are presented.
|
Page generated in 0.0369 seconds