Return to search

Estimation of volume, biomass, and carbon of coarse woody debris in native forests in São Paulo State, Brazil / Estimativa do volume, biomassa e carbono de madeira morta em florestas nativas no Estado de São Paulo, Brasil

The objective of this study was to test the line intersect sampling (LIS) methodology using the design-based inference with stratified systematic sampling and two transect shapes: a straight line and a cross shape, both with three different lengths (100, 150, and 200 m) to estimate the number of coarse woody debris (CWD) elements, their volume, biomass and carbon stocks; by decay class; furthermore, we fit and select CWD biomass and carbon models. The study area includes two types of native forest in the State of São Paulo, Brazil: a Seasonal Semi-deciduous Forest (SSF) and a Cerrado sensu-stricto (CSS). Two strata were chosen in each area, and in each stratum ten sampling units were installed according to a systematic sampling protocol. Each sampling unit had one North- South line of 200 m superimposed over the other lengths (100 and 150 m) and three lines (one for each length) in the East-West direction forming the cross shapes, for a total 650 m per sampling unit. All CWD elements with a diameter _ 10 cm that crossed the transect were tallied. For each element, the diameter, length, perpendicular width, decay class, and (when possible) species was recorded. Disc samples were taken from each element, from which cylinder samples were extracted then oven dried to determine density. These cylinders were milled and analyzed to determine carbon content (%). The volume of each element was calculated by taking the difference between cross-sectional area and any hollowed area, then multiplying by the element\'s length. Biomass was calculated by multiplying volume values by density values, and carbon stocks were calculated by multiplying biomass by the carbon percentage factors computed via lab analysis. Total estimators were calculated by area and per hectare for the number of CWD elements, their volume, biomass, and carbon stocks. These estimators were calculated by stratum then combined across the entire sample population. The data from each sampling unit was also used to calculate the wood density and carbon concentration by decay class, as well as to fit linear and nonlinear models. For the SSF area, the most accurate transect design was the 200 m cross shaped; and for the CSS area was selected the 150 m cross shape. Both areas showed lower biomass values (1.3 and 6.7 Mg/ha for the CSS and SSF areas, respectively) than other studies in the Amazon Forest where CWD research has been conducted. In both areas, as the decay class increased (from least to most rotten material), wood density decreased, which follows the same pattern as other literature. Carbon concentration barely changed within decay classes. Using a conversion constant of 50%, similar carbon stock results were obtained. Nonlinear models (using diameter and length as predictor variables) proved an efficient tool for predicting CWD biomass at an element level. As expected, biomass data exhibited heteroscedasticity, which was mitigated by modeling the variance of the residuals with a power function of the combined variable. Adding decay class as an indicator variable also resulted in model improvement. / Este estudo buscou testar a metodologia de amostragem pela linha interceptadora (LIS), usando a inferência baseada no design, com amostragem sistemática estratificada em duas formas de transectos: linha reta e forma de cruz, ambos com três diferentes comprimentos de transectos: 100, 150 e 200 m para estimar o número de elementos, volume, biomassa e estoque de carbono de madeira morta; investigar a densidade da madeira e a concentração de carbono da madeira morta pela classe de decomposição; e, ajustar e selecionar modelos de biomassa e carbono de madeira morta, em dois tipos de floresta nativa no estado de São Paulo, Brasil: uma Floresta Estacional Semidecidual (SSF) e um Cerrado sensu-stricto (CSS). Em cada tipo florestal foram selecionados dois estratos e localidas dez unidades de amostragem em cada. A unidade de amostragem é um transecto Norte-Sul, com 200 m, que sobrepõe os outros comprimentos (100 e 150 m), e três transectos (para cada comprimento) na direção Leste-Oeste, formando a cruz, totalizando 650m. Foram medidos todos os elementos de madeira morta grossa (CWD) que cruzaram o transecto com um diâmetro _10 cm. Foi medido o diâmetro na interseção, o comprimento, a largura perpendicular, o elemento foi classificado de acordo com a classe de decomposição e, quando possível, a espécie foi identificada. De cada elemento foi retirado um disco de amostra na interseção, este foi fotografado para o cálculo da área oca. De cada disco foram extraídos cilindros, secos em estufa para determinação da densidade, estes foram moídos e analisados para determinação do teor de carbono (%). O volume de cada elemento foi calculado pela diferença da área seccional e área oca, multiplicada pelo comprimento; a biomassa foi calculada multiplicando o volume pela densidade; e o estoque de carbono foi calculado multiplicando a biomassa pela concentração de carbono. Os estimadores do total foram calculados por área e por hectare para o número de elementos de CWD, volume, biomassa e estoque de carbono; foram calculados por estrato, e combinados para a população. Os dados dos 650m de cada unidade foram utilizados para calcular as médias da densidade da madeira e concentração de carbono por classe de decomposição e, para construção de modelos lineares e não-lineares. Para a SSF, o design mais preciso foi transectos em forma de cruz, com 200 m. Para CSS foram selecionados transectos em cruz, com 150 m. As áreas apresentaram valores de biomassa 1.3-6.7 Mg/ha para CSS e SSF, respectivamente. Em ambos tipos florestais foi encontrado que à medida que a classe de decomposição aumenta (mais fresco para mais podre), a densidade da madeira diminui, seguindo os mesmos padrões encontrados na literatura. A concentração de carbono não apresentou mudança dentro das classes de decomposição. Modelos nãolineares com diâmetro e comprimento como variáveis preditoras provaram ser uma ferramenta eficiente para predizer a biomassa e carbono de CWD. Como esperado, os dados de biomassa apresentaram heterocedasticidade, mitigada pela modelagem da variância dos resíduos com uma função de potência. A adição da classe de decomposição como variável indicadora também mostrou melhora nos modelos.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19102017-110123
Date21 July 2017
CreatorsMoreira, Andrea Bittencourt
ContributorsCouto, Hilton Thadeu Zarate do
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0027 seconds