Le flot de Ricci, introduit par Hamilton au début des années 80, a montré sa valeur pour étudier la topologie et la géométrie des variétés riemanniennes lisses. Il a ainsi permis de démontrer la conjecture de Poincaré (Perelman, 2003) et le théorème de la sphère différentiable (Brendle et Schoen, 2008). Cette thèse s'intéresse aux applications du flot de Ricci à des espaces métriques à courbure minorée peu lisses. On définit en particulier ce que signifie pour un flot de Ricci d'avoir pour condition initiale un espace métrique. Dans le Chapitre 2, on présente certains travaux de Simon permettant de construire un flot de Ricci pour certains espaces métriques de dimension 3. On démontre aussi deux applications de cette construction : un théorème de finitude en dimension 3 et une preuve alternative d'un théorème de Cheeger et Colding en dimension 3. Dans le Chapitre 3, on s'intéresse à la dimension 2. On montre que pour les surfaces singulières à courbure minorée (au sens d'Alexandrov), on peut définir un flot de Ricci et que celui-ci est unique. Ceci permet de montrer que l'application qui à une surface associe son flot de Ricci est continue par rapport aux perturbations Gromov-Hausdorff de la condition initiale. Le Chapitre 4 généralise une partie de ces méthodes en dimension quelconque. On doit y considérer des conditions de courbure autres que les usuelles minorations de la courbure de Ricci ou de la courbure sectionnelle. Les méthodes mises en place permettent de construire un flot de Ricci pour certains espaces métriques non effondrés limites de variétés dont l'opérateur de courbure est minoré. On montre aussi que sous certaines hypothèses de non-effondrement, les variétés à opérateur de courbure presque positif portent une métrique à opérateur de courbure positif ou nul.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00768066 |
Date | 21 September 2012 |
Creators | Richard, Thomas |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds