Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Hierarchical information transfer is investigated as a tool to prepare well‐defined
nanostructures with high aspect ratios, via the self‐assembly of helically folding poly(paraaryltriazole)
(P(p‐AT)) foldamers.
A novel ‘helicity codon’ based on the 1,4‐linkage geometry in 1,4‐aryl‐disubstituted‐1,2,3‐
triazoles is developed. Helical folding is induced exclusively by directing all triazole moieties
into a cisoid configuration. By linking the triazole rings in a para fashion about the aryl
moiety, this helicity codon codes for a helix with a large internal cavity of ~ 3 nm. One turn
of the putative helical conformation requires 14 repeat units and the helical pitch is ~ 0.38
nm. The aryltriazole backbone is appended with amphiphilic oligo(ethylene glycol) (oEG)
units which have the dual roles of imparting solubility as well as instigating a solvophobic
helical folding in solvents which poorly solvate the hydrophobic arytriazole backbone but,
solvate the side chains fully. The helix interior is hydrophobic and the exterior is amphiphilic.
A true polymer synthesis approach to the foldamer synthesis, based on the copper catalysed
azide‐alkyne cycloaddition (CuAAC) AB step growth polymerization system, is developed.
This is preceded by a facile synthetic protocol for the AB monomers. The subsequent P(p‐
AT)s have high molecular weights ensuring several turns in the helical foldamer. A DMF/H2O
good solvent/bad solvent system is established. Twist sense bias in the helical foldamers is
successfully imparted by installing enantiopure chiral oEG side chains. Spectroscopic
signatures for the solvent dependent coil to helix transition are established enabling the
tracking of the conformational transitions from primary to secondary and finally tertiary
structure. Conclusive evidence for the formation of stable, long stacked helical columns, in
the solution state, is provided via cryo‐TEM. The helical stacks are several microns long, but
of random lengths and do not intertwine but rather run parallel to each other. The helical
stacks, however, have indeterminate lengths.
Control over the length and chirality of the self‐assembled helical stacks is successfully
imparted by using a template which mimics the role of ribonucleic acid (RNA) in tobacco
mosaic virus (TMV). The template used is the hydrophobic α‐helical polypeptide poly(γ‐
benzyl‐L‐glutamate) (PBLG). Self‐assembly is driven by solvophobicity in a DMF/H2O system, the PBLG template being encapsulated inside the hydrophobic cavities of the stacked/selfassembled
helical foldamers. Information from the template, i.e. length and chirality, is used
to control the length and the chirality of the stacked/self‐assembled construct.
The templated self‐assembly process is solvent dependent. When carried out in the solvent
regime at the coil to helix transition mid‐point of the foldamer host, system operates under
a dynamic equilibrium. Under these conditions, the self‐assembly process is shown to take
place between two distinct states, the foldamer helices and the helical template, the
template threading through the foldamer helices. The resulting self‐assembled construct
has a pseudo‐rotaxane architecture.
Under dynamic equilibrium conditions, temperature induced dis‐assembly of the templated
assembled construct, is shown to be a cooperative process, whilst re‐assembly is
characterized by a large hysteresis. By increasing the volume fraction of water, the
solvophobic character of the system is increased and template assembled construct is better
stabilised. The assembly system, however, loses its dynamic equilibrium character and falls
into kinetic traps. Temperature induced de‐threading, of the foldamer helices, becomes less
favourable and loses its cooperative character although the hysteresis loop is reduced. / AFRIKAANSE OPSOMMING: Hiërargiese inligtingsoordrag is bestudeer as ‘n hulpmiddel om goed gedefinieerde
nanostrukture met ‘n goeie beeldverhouding voor te berei. Die nanostrukture word
voorberei deur middel van self‐samestelling van heliese vouing van poli(para‐arieltriasool)
(P(p‐AT)) ‘foldamers’.
‘n Nuwe heliese‐kodon gebaseer op die 1,4 koppelingsgeometrie in 1,4 arieldigesubstitueerde‐
1,2,3‐triasool is ontwikkel. Heliese vouing word uitsluitlik geïnduseer as al
die triasole in die sis konfigurasie is. Deur die triasole in ‘n para konfigurasie te bind, kodeer
die heliese kodon vir ‘n heliks met ‘n groot interne kanaal van ~ 3 nm. Een draai van die
heliks benodig 14 herhalende eenhede en die heliese gradiënt ~ 0.38 nm. Amfifiliese
oligo(etileen glikol) (oEG) eenhede is aan die arieltriasoolruggraat aangeheg. Hierdie
aanhegting van oEG eenhede bevorder oplosbaarheid en dit induseer ‘n solvofobiese
heliese vouing in oplosmiddels wat nie die hidrofobiese arieltriasoolruggraat oplos nie, maar
wel die sy‐kettings volledig oplos. Die binnekant van die heliks is hidrofobies en die
buitekant is amfifilies.
‘n Polimeersintese benadering tot die ‘foldamer’ sintese (gebaseer op die koper
gekataliseerde siklo‐addisie reaksie tussen ‘n asied en ‘n alkyn) AB stapsgewyse groei
polimerisasiestelsel, is ontwikkel. Dit is voorafgegaan deur ‘n geskikte sintetiese protokol vir
die AB monomere. Die daaropvolgende P(p‐AT) het ‘n hoë molekulêre massa wat verseker
dat daar ‘n hele paar draaie in die heliese ‘foldamer’ is. ‘n DMF/H2O goeie oplosmiddel/
swak oplosmiddel sisteem is vasgestel. Draaiing van die heliks na ‘n spesifieke kant alleenlik
is suksesvol geïnduseer deur die toevoeging van suiwer enantiomere van die chirale oEG sykettings.
Spektroskopiese handtekeninge van die oplosmiddel‐afhanklike ketting tot heliks
transformasie word vasgestel sodat die oorgangstoestande gevolg kan word vanaf primêre
tot sekondêre en uiteindelik tesiêre struktuur. Beslissende bewyse vir die formasie van
stabiele, lang gestapelde heliese kolomme in die opgeloste toestand is bewys met cryo‐TEM.
Die heliese stapels is verskeie mikron lank, maar het verskillende lengtes. Die heliese stapels
is parallel aan mekaar en oorvleuel nie. Die lengte van die heliese stapels is egter
onbepaalbaar. Beheer oor die lengte en chiraliteit van die self‐samestellende heliese stapels is verkry deur
gebruik te maak van ‘n templaat wat die rol van ribonukleïensuur (RNS) in die
tabakmosaïekvirus (TMV) naboots. Hidrofobiese α‐heliese polipeptied poli(γ‐bensiel‐Lglutamaat)
(PBLG) is gebruik as die templaat. Self‐samestelling word gedryf deur
solvofobisiteit in ‘n DMF/H2O stelsel, met die PBLG templaat wat dan geënkapsuleer word
binne die hidrofobiese holtes van die gestapelde/ self‐saamgestelde heliese ‘foldamers’. Die
lengte en die chiraliteit van die templaat word gebruik om die lengte en chiraliteit van die
gestapelde helikse te beheer.
Die templaatbemiddelde self‐samestellende proses is afhanklik van die oplosmiddel. Die
stelsel is by ‘n dinamiese ewewig wanneer, uitgevoer in ‘n oplosmiddel, die ketting na heliks
oorgang die middelpunt van die ‘foldamer’ gasheer bereik het. By hierdie omstandighede
vind die self‐samestellende proses plaas tussen twee afsonderlike toestande nl. die
‘foldamer’ helikse en die heliese templaat, en die templaat wat vleg deur die ‘foldamer’
helikse vleg. Die gevolglike struktuur het ‘n pseudo‐rotaxane argitektuur.
By dinamiese ewewigstoestande veroorsaak temperatuur dat die self‐samestellende
templaatstrukture weer disintegreer. Hierdie is ‘n koöperatiewe proses terwyl die hersamestelling
gekarakteriseer word deur ‘n sloerende proses. Deur die waterfraksie te
vermeerder, word die solvofobiese karakter van die sisteem verhoog en die templaat selfsamestellende
struktuur beter gestabiliseer. Die samestellingsproses verloor egter sy
dinamiese ewewigkarakter en val in kinetiese slaggate. Temperatuur geïnduseerde
disintegrasie van die foldamer helikse word minder gunstig en dit verloor die koöperatiewe
karakter alhoewel die sloering verminder is.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/20370 |
Date | 03 1900 |
Creators | Pfukwa, Rueben |
Contributors | Klumperman, Bert, Rowan, Alan E., Stellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Format | xxii, 119 p. : col. ill. |
Rights | Stellenbosch University |
Page generated in 0.0066 seconds