Return to search

Céramiques phosphocalciques fonctionnalisées : étude des propriétés de surface par méthodes spectroscopiques / Functionalised phosphocalcic ceramics : study of surface properties by spectroscopic methods

Ce travail s’inscrit dans le cadre général du développement de biomatériaux ostéoinducteurs pour la réparation de grands défauts osseux. L’étude est une contribution à la compréhension des interactions physiques et chimiques entre des céramiques phosphocalciques et deux protéines d’intérêt : la fibronectine, protéine d’adhésion cellulaire, et le VEGF (pour Vascular Endothelial Growth factor) qui est impliqué dans la vascularisation et l’amélioration de la formation osseuse.Les interactions physiques fibronectine/biocéramique ont été étudiées par spectroscopie de force afin d’évaluer l’influence de la topographie et de la composition chimique de céramiques phosphocalciques en hydroxyapatite (HA), hydroxyapatite silicatée (SiHA) et hydroxyapatite carbonatée (CHA) sur l’adhésion de la fibronectine. Les résultats obtenus par cartographie de forces mettent en évidence une absence d’incidence de la chimie des céramiques polies sur la répartition en surface et l’intensité des forces d’adhésion. En revanche ces dernières sont plus fortes au niveau des joints de grains des céramiques non polies mettant en avant une influence de la topographie de surface des matériaux modulée par la chimie.Le protocole de fonctionnalisation par le VEGF consiste en trois étapes : silanisation, addition du SM(PEG)6 et immobilisation du VEGF. Les interactions chimiques VEGF/biocéramique ont été étudiées principalement par imagerie Raman pour suivre ces étapes successives de la fonctionnalisation par le VEGF de céramiques polies en hydroxyapatite (HA) et hydroxyapatite carbonatée (CHA). Cette approche a permis de cartographier l’évolution chimique de la surface des matériaux et de mettre en évidence la distribution spatiale ainsi que les réactions préférentielles entre les molécules intermédiaires et le VEGF en fonction de la nature du substrat. / This work is ascribed within the framework of the development of osteoinductive biomaterials for the repair large bone defects. It is a contribution to the understanding of the physical and chemical interactions between phosphocalcic ceramics and two proteins of interest: fibronectin (Fn), a cell adhesion protein, and Vascular Endothelial Growth Factor (VEGF) which is involved in vascularisation and improvement of bone formation.Fibronectin/bioceramic physical interactions were studied by force spectroscopy to evaluate the influence of the topography and the chemical composition of phosphocalcic ceramics made of hydroxyapatite (HA), silicated hydroxyapatite (SiHA) and carbonated hydroxyapatite (CHA) on fibronectin adhesion. The results obtained in terms of force cartography do not indicate any impact of the polished ceramics chemistry on the surface distribution and intensity of adhesion forces. However, these forces are more intense at the level of the grain boundaries of unpolished ceramics, highlighting an influence of the topography modulated by the chemical composition.The protocol for functionalisation by VEGF consists of three steps: silanisation, addition of SM(PEG)6 and immobilisation of VEGF. VEGF/bioceramic chemical interactions were studied mainly by Raman imaging in order to follow the successive steps of the functionalisation by VEGF of the polished surface of ceramics made of hydroxyapatite (HA) and carbonated hydroxyapatite (CHA). This approach allowed to map the surface chemical changes and to point out the spatial distribution as well as the preferential reactions between the intermediate molecules and VEGF depending of the substrate.

Identiferoai:union.ndltd.org:theses.fr/2018LIMO0109
Date14 December 2018
CreatorsEl Felss, Nadia
ContributorsLimoges, Champion, Eric, Damia, Chantal, Dutreilh-Colas, Maggy
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0094 seconds