[ES] La presente Tesis Doctoral se centra en la síntesis de nanoestructuras híbridas de TiO2/ZnO para su utilización como fotoelectrocatalizadores durante la producción de hidrógeno a partir de la rotura de la molécula de agua mediante fotoelectrocatálisis y la degradación fotoelectrocatalítica de pesticidas. La principal ventaja de las nanoestructuras híbridas de TiO2/ZnO frente a otros fotocatalizadores basados en materiales semiconductores radica en su capacidad para formar heterouniones en las que se intercalan las bandas de valencia y conducción de ambos semiconductores. Este fenómeno produce una disminución del ancho de banda del fotoelectrocatalizador y de los procesos de recombinación de los pares electrón-hueco fotogenerados y un aumento del rango de absorción de la luz, lo que mejora sus propiedades como fotoelectrocatalizadores.
Las nanoestructuras híbridas de TiO2/ZnO obtenidas en la presente Tesis Doctoral se sintetizaron mediante electrodeposición de ZnO sobre nanoesponjas de TiO2. Las nanoesponjas de TiO2 se formaron mediante anodizado electroquímico de titanio en condiciones hidrodinámicas y, posteriormente, se electrodepositó ZnO sobre la superficie de las nanoesponjas de TiO2 modificando la concentración de precursor (Zn(NO3)2 0.5-60 mM), la temperatura (25-75 °C) y el tiempo (15-60 min). Además, se estudió la influencia de electrodepositar ZnO sobre nanoesponjas de TiO2 amorfo o nanoesponjas de TiO2 cristalino, observándose una mejora significativa de la actividad fotoelectrocatalítica de las nanoestructuras híbridas de TiO2/ZnO electrodepositadas sobre nanoesponjas de TiO2 cristalino.
Las nanoestructuras híbridas de TiO2/ZnO sintetizadas tuvieron morfología en forma de nanoesponjas, nanobarras hexagonales, nanobarras sin definir y nanoláminas, estudiando la influencia de la concentración de Zn(NO3)2, temperatura y tiempo durante el proceso de electrodeposición de ZnO sobre su comportamiento como fotoelectrocatalizadores. Las nanoestructuras híbridas de TiO2/ZnO sintetizadas se caracterizaron mediante Microscopía Electrónica de Barrido de Emisión de Campo (FE-SEM), Espectroscopía de Energía Dispersiva de Rayos X (EDX), Microscopía Electrónica de Transmisión (TEM), Microscopía de Fuerza Atómica (AFM), Difracción de Rayos X (DRX), Espectroscopía UV-Visible y mediciones de la banda prohibida. Además, se caracterizaron fotoelectroquímicamente mediante ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis y estabilidad frente a la fotocorrosión y electroquímicamente mediante Espectroscopía de Impedancia Fotoelectroquímica (PEIS) y ensayos de Mott-Schottky.
Los resultados evidenciaron que las nanoestructuras híbridas de TiO2/ZnO electrodepositadas sobre TiO2 cristalino a 75 °C durante 15 minutos con una concentración de Zn(NO3)2 de 30 mM fueron las más favorables para llevar a cabo aplicaciones fotoelectroquímicas debido a que ofrecieron buena estabilidad frente a la fotocorrosión, elevada respuesta fotoelectroquímica (177 % superior a la de las nanoesponjas de TiO2), baja resistencia a la transferencia de carga y elevada densidad de portadores de carga, en comparación con las nanoesponjas de TiO2.
Por último, las nanoestructuras híbridas de TiO2/ZnO óptimas se emplearon como fotoelectrocatalizadores en aplicaciones energéticas y medioambientales. Por un lado, se evaluó la producción teórica de hidrógeno que se obtendría al utilizar las nanoestructuras híbridas de TiO2/ZnO sintetizadas en la presente Tesis Doctoral como fotoánodos durante el proceso de rotura de la molécula de agua mediante fotoelectrocatálisis. Por otro lado, se evaluó la utilización de las nanoestructuras híbridas de TiO2/ZnO óptimas en la degradación fotoelectrocatalítica de pesticidas (Imazalil) en agua, obteniéndose un porcentaje de degradación del 99.6 % llevando a cabo la degradación fotoelectrocatalítica de 10 ppm de Imazalil en Na2SO4 0.1 M durante 24 horas aplicando un potencial de 0.6 V (Ag/AgCl(KCl 3M)). / [CA] La present tesi doctoral se centra en la síntesi de nanoestructures híbrides de TiO2/ZnO per a utilitzar-les com a fotoelectrocatalitzadors durant la producció d'hidrogen a partir del trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi i la degradació fotoelectrocatalítica de pesticides. El principal avantatge de les nanoestructures híbrides de TiO2/ZnO enfront d'altres fotocatalitzadors basats en materials semiconductors radica en la seua capacitat per a formar heterojuncions en les quals s'intercalen les bandes de valència i conducció de tots dos semiconductors. Aquest fenomen produeix una disminució de l'ample de banda del fotoelectrocatalitzador i dels processos de recombinació dels parells electró-forat fotogenerats, i un augment del rang d'absorció de la llum, la qual cosa millora les seues propietats com a fotoelectrocatalitzadors.
Les nanoestructures híbrides de TiO2/ZnO es van sintetitzar mitjançant electrodeposició de ZnO sobre nanosponges de TiO2. Les nanosponges de TiO2 es van formar mitjançant anodització electroquímica de titani en condicions hidrodinàmiques i, posteriorment, es va electrodepositar ZnO sobre la superfície de les nanosponges de TiO2 modificant la concentració del precursor (Zn(NO3)2 0.5-60 mm), la temperatura (25-75 °C) i el temps d'electrodeposició (15-60 min). A més, es va estudiar la influència d'electrodepositar ZnO sobre nanosponges de TiO2 amorf o nanosponges de TiO2 cristal·lí, i es va observar una millora significativa de l'activitat fotoelectrocatalítica de les nanoestructures híbrides de TiO2/ZnO en dur a terme el procés d'electrodeposició de ZnO sobre nanosponges de TiO2 cristal·lí.
Les nanoestructures híbrides de TiO2/ZnO sintetitzades van tindre morfologia en forma de nanosponges, nanobarres hexagonals, nanobarres sense definir i nanolàmines, i es va estudiar la influència de la concentració de Zn(NO3)2, la temperatura i el temps durant el procés d'electrodeposició de ZnO sobre el seu comportament com a fotoelectrocatalitzadors. Les nanoestructures híbrides de TiO2/ZnO es van caracteritzar mitjançant microscòpia electrònica d'escombratge d'emissió de camp, espectroscòpia de raigs X per dispersió d'energia, microscòpia electrònica de transmissió, microscòpia de força atòmica, difracció de raigs X, espectroscòpia UV visible i mesuraments de la banda prohibida. D'altra banda, es van caracteritzar fotoelectroquímicament mitjançant assajos de trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi i estabilitat enfront de la fotocorrosió, i electroquímicament mitjançant espectroscòpia d'impedància fotoelectroquímica i assajos de Mott-Schottky.
Els resultats van evidenciar que les nanoestructures híbrides de TiO2/ZnO electrodepositades sobre TiO2 cristal·lí a 75°C durant 15 minuts amb una concentració de Zn(NO3)2 de 30 mm van ser les més favorables per a dur a terme aplicacions fotoelectroquímiques, pel fet que van oferir bona estabilitat enfront de la fotocorrosió, elevada resposta fotoelectroquímica (un 177 % superior a la de les nanosponges de TiO2), baixa resistència a la transferència de càrrega i elevada densitat de portadors de càrrega, en comparació amb les nanosponges de TiO2.
Finalment, les nanoestructures híbrides de TiO2/ZnO òptimes es van emprar com a fotoelectrocatalitzadors en aplicacions energètiques i mediambientals. D'una banda, es va avaluar la producció teòrica d'hidrogen que s'obtindria en utilitzar les nanoestructures híbrides de TiO2/ZnO sintetitzades en la present tesi doctoral com a fotoànodes durant el procés de trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi. D'altra banda, es va avaluar la utilització de les nanoestructures híbrides de TiO2/ZnO òptimes en la degradació fotoelectrocatalítica de pesticides (Imazalil) en aigua, i es va obtenir un percentatge de degradació del 99.6% duent a terme la degradació fotoelectrocatalítica de 10 ppm d'Imazalil en Na2SO4 0.1 M durant 24 h aplicant un potencial de 0.6 V (Ag/AgCl(KCl 3M)). / [EN] This Doctoral Thesis focuses on synthesizing TiO2/ZnO hybrid nanostructures to be used as photoelectrocatalysts in energy and environmental applications, particularly hydrogen production from water splitting by photoelectrocatalysis and photoelectrocatalytic degradation of pesticides. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials is their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This phenomenon produces a decrease in the band gap of the nanostructures, the recombination processes of the photogenerated electron-hole pairs, and an increase in the light absorption range, which improves their properties as photoelectrocatalysts.
The TiO2/ZnO hybrid nanostructures formed in this Doctoral Thesis were synthesized by electrodeposition of ZnO on TiO2 nanosponges. First, TiO2 nanosponges were formed by electrochemical anodization of titanium under hydrodynamic conditions (3000 rpm) and, subsequently, ZnO was electrodeposited on the surface of the TiO2 nanosponges by modifying the precursor concentration (Zn(NO3)2 0.5 - 60 mM), the temperature (25 - 75 °C) and the electrodeposition time (15 - 60 min). In addition, the influence of performing the ZnO electrodeposition on amorphous TiO2 nanosponges (before the thermal treatment) or crystalline TiO2 nanosponges (after the thermal treatment) was studied, showing a significant improvement in the photoelectrocatalytic activity of TiO2/ZnO hybrid nanostructures by carrying out the ZnO electrodeposition process on crystalline TiO2 nanosponges.
In this Doctoral Thesis, TiO2/ZnO hybrid nanostructures with morphologies of nanosponges, hexagonal nanorods, undefined nanorods, and nanosheets were synthesized by studying the influence of Zn(NO3)2 concentration, temperature and time during the ZnO electrodeposition process. In addition, the performance of TiO2/ZnO hybrid nanostructures as photoelectrocatalysts was studied. The synthesized TiO2/ZnO hybrid nanostructures were characterized morphologically, photoelectrochemically, and electrochemically. On the one hand, they were morphologically characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Diffraction X-Ray (XRD), UV-Visible Spectroscopy and band gap measurements. On the other hand, they were characterized photoelectrochemically by e water splitting and stability against photocorrosion tests and electrochemically by Photoelectrochemical Impedance Spectroscopy (PEIS) and Mott-Schottky tests.
The results showed that TiO2/ZnO hybrid nanostructures electrodeposited on crystalline TiO2 at 75 °C for 15 minutes with a Zn(NO3)2 concentration of 30 mM were the most favourable for carrying out photoelectrochemical applications because they offered good stability against photocorrosion, high photoelectrochemical response (177 % higher than that of TiO2 nanosponges), low resistance to charge transfer and high density of charge carriers, compared to TiO2 nanosponges.
Finally, the optimal TiO2/ZnO hybrid nanostructures were used as photoelectrocatalysts in energy and environmental applications. On the one hand, the theoretical hydrogen production obtained with the TiO2/ZnO hybrid nanostructures synthesized in this Doctoral Thesis during the water splitting tests was evaluated. On the other hand, the use of the optimal TiO2/ZnO hybrid nanostructures as photoelectrocatalysts in the photoelectrocatalytic degradation of pesticides (Imazalil) in water was evaluated, obtaining a degradation percentage of 99.6 % carrying out the photoelectrocatalytic degradation of 10 ppm of Imazalil in Na2SO4 0.1 M for 24 hours applying a potential of 0.6 VAg/AgCl (3M KCl). / Agradezco al Ministerio de Ciencia e Innovación la concesión de la
subvención proporcionada por el Sistema Nacional de Garantía Juvenil (PEJ2018-
003596-A-AR), al Ministerio de Economía, Industria y Competitividad la concesión
del proyecto CTQ2016-79203-R y al Ministerio de Ciencia e Innovación/Agencia
Estatal de Investigación la concesión del proyecto PID2019-105844RB-
I00/MCIN/AEI/ 10.13039/501100011033, en los cuales he podido participar durante
el desarrollo de la presente Tesis Doctoral. / Navarro Gázquez, PJ. (2023). Desarrollo de nuevos electrodos basados en nanoestructuras híbridas de óxidos metálicos semiconductores para aplicaciones energéticas y medioambientales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194708
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/194708 |
Date | 06 July 2023 |
Creators | Navarro Gázquez, Pedro José |
Contributors | Blasco Tamarit, María Encarnación, Muñoz Portero, María José, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Agencia Estatal de Investigación, Ministerio de Economía y Competitividad |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105844RB-I00/ES/NANOTECNOLOGIA ELECTROQUIMICA PARA APLICACIONES CATALITICAS EN LOS CAMPOS MEDIOAMBIENTAL Y ALMACENAJE DE ENERGIA/, info:eu-repo/grantAgreement/MINECO//CTQ2016-79203-R/ES/MODIFICACION DE FOTOCATALIZADORES DE OXIDOS METALICOS NANOESTRUCTURADOS PARA LA ELIMINACION DE FARMACOS Y PRODUCCION ENERGETICA/ |
Page generated in 0.004 seconds