• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The metabolism of carbofuran in active soils and its responses to enzyme inhibitors

Talebi, Khalil January 1989 (has links)
No description available.
2

Abiotic and biotic influences on acetochlor fate in pristine soils and subsoils

Taylor, J. P. January 2002 (has links)
No description available.
3

Impact of acetochlor on surface and subsurface soil microbial communities

Wilson, Bryan January 2002 (has links)
No description available.
4

Extraction and photolysis of pesticides on soil

Fitzpatrick, Lisa Jane January 2000 (has links)
No description available.
5

The Effects of Copper on the Degradation of Atrazine and Indoxacarb in a New Zealand Soil

Dewey, Katrina Anne January 2010 (has links)
Pesticides are an important component of New Zealand’s primary production sectors. Infestation of pests and diseases can affect crop yield, crop value and damage the country’s export reputation, resulting in economic losses. Repeat applications of pesticides, however, can result in contamination of land and water. Therefore, it is important to understand the fate of pesticides in the environment. Factors which can affect pesticide persistence include soil properties (pH, SOM, CEC), leaching and run-off, volatilisation and co-contamination with heavy metals. Many soils in New Zealand contain high levels of copper from historical applications of copper-based pesticides. Co-contamination of soils may lead to the persistence of some synthetic organic pesticides. An investigation was undertaken to determine the effects of co-contamination with copper on the biodegradation of atrazine and indoxacarb in a New Zealand soil. A Templeton sandy loam soil was spiked with CuSO₄ to achieve concentrations of 0, 100, 250, 500 and 1000 mg kg⁻¹ Cu. The spiked soils were field aged for six months prior to pesticide spiking with either atrazine or indoxacarb. The aged Cu-spiked soils were spiked with either atrazine or indoxacarb at a rate of 2 mg kg⁻¹. A glasshouse study was conducted to determine if copper inhibited the degradation of the pesticides. The pesticide-spiked soils were sampled at the time of spiking (t₀), at the estimated half-lives (t₁) and at twice the estimated half-lives (t₂) of the individual pesticides. The estimated half-lives were based on literature values. The bioavailability and subsequent adverse effects of copper on the soil microbial community was investigated. Total and bioavailable copper concentrations, phosphatase and urease enzyme activities, microbial biomass, and pesticide residue concentrations were all measured in the experimental soil. Methods were developed for the extraction of atrazine, atrazine metabolite and indoxacarb residues from the experimental soil. Total copper concentrations extracted ranged from 4–1060 mg kg⁻¹ in the experimental soils and were consistent throughout the pesticide degradation studies. The bioavailability of copper was a maximum of 2% of the total copper concentration. Bioavailable copper concentrations were positively correlated to total copper (p<0.01). Soil biological properties were investigated to determine the effects of copper on the soil microbial community. Phosphatase and urease enzyme activities, as well as microbial biomass concentrations, were negatively correlated with total copper (p<0.05). Total copper was a better indicator of effects on microorganisms than bioavailable copper. The soil biological properties began showing adverse effects above a total copper concentration of 100 mg kg⁻¹. This concentration also corresponds to New Zealand’s copper limit in biosolids, which is protective of human, plant and microorganism health. Phosphate buffer extraction methods were developed for the analysis of atrazine and indoxacarb residues in the experimental soil by HPLC-UV. Elevated copper concentrations did not inhibit the degradation of atrazine or indoxacarb in the experimental soil. The half-lives of both atrazine (≤19.4 d) and indoxacarb (≤18.8 d) were lower in the spiked experimental soils than the means reported in previous New Zealand and international studies, but were within the reported ranges. This study provided the first data on the fate of indoxacarb in New Zealand. Hydroxyatrazine was the only metabolite detected in the atrazine-spiked experimental soils. Significant differences between the control (Cu-1) and copper levels above 100 mg kg⁻¹ were observed for hydroxyatrazine at t₂. Significant negative correlations were observed between hydroxyatrazine and the microbiomass at t₁ and phosphatase activity at t₂ (p<0.05). These significant relationships suggest that elevated copper concentrations may alter the degradation of this metabolite in the experimental soils due copper toxicity of the soil microbial community. The results of this thesis indicate that elevated levels of copper above 100 mg kg⁻¹ negatively impact the soil microbial community and may reduce the overall health of the soil. Biodegradation is a key mechanism for the degradation of atrazine and indoxacarb in the soil, so it is important that the health of the soil microbial community is maintained. Therefore, it is recommended that atrazine and indoxacarb are only applied to soils with a total copper concentration less than 100 mg kg⁻¹. This will protect the health of the soil microbial community and prevent the potential adverse effects of copper on the degradation of pesticide metabolites in the soil.
6

The Effects of Copper on the Degradation of Atrazine and Indoxacarb in a New Zealand Soil

Dewey, Katrina Anne January 2010 (has links)
Pesticides are an important component of New Zealand’s primary production sectors. Infestation of pests and diseases can affect crop yield, crop value and damage the country’s export reputation, resulting in economic losses. Repeat applications of pesticides, however, can result in contamination of land and water. Therefore, it is important to understand the fate of pesticides in the environment. Factors which can affect pesticide persistence include soil properties (pH, SOM, CEC), leaching and run-off, volatilisation and co-contamination with heavy metals. Many soils in New Zealand contain high levels of copper from historical applications of copper-based pesticides. Co-contamination of soils may lead to the persistence of some synthetic organic pesticides. An investigation was undertaken to determine the effects of co-contamination with copper on the biodegradation of atrazine and indoxacarb in a New Zealand soil. A Templeton sandy loam soil was spiked with CuSO₄ to achieve concentrations of 0, 100, 250, 500 and 1000 mg kg⁻¹ Cu. The spiked soils were field aged for six months prior to pesticide spiking with either atrazine or indoxacarb. The aged Cu-spiked soils were spiked with either atrazine or indoxacarb at a rate of 2 mg kg⁻¹. A glasshouse study was conducted to determine if copper inhibited the degradation of the pesticides. The pesticide-spiked soils were sampled at the time of spiking (t₀), at the estimated half-lives (t₁) and at twice the estimated half-lives (t₂) of the individual pesticides. The estimated half-lives were based on literature values. The bioavailability and subsequent adverse effects of copper on the soil microbial community was investigated. Total and bioavailable copper concentrations, phosphatase and urease enzyme activities, microbial biomass, and pesticide residue concentrations were all measured in the experimental soil. Methods were developed for the extraction of atrazine, atrazine metabolite and indoxacarb residues from the experimental soil. Total copper concentrations extracted ranged from 4–1060 mg kg⁻¹ in the experimental soils and were consistent throughout the pesticide degradation studies. The bioavailability of copper was a maximum of 2% of the total copper concentration. Bioavailable copper concentrations were positively correlated to total copper (p<0.01). Soil biological properties were investigated to determine the effects of copper on the soil microbial community. Phosphatase and urease enzyme activities, as well as microbial biomass concentrations, were negatively correlated with total copper (p<0.05). Total copper was a better indicator of effects on microorganisms than bioavailable copper. The soil biological properties began showing adverse effects above a total copper concentration of 100 mg kg⁻¹. This concentration also corresponds to New Zealand’s copper limit in biosolids, which is protective of human, plant and microorganism health. Phosphate buffer extraction methods were developed for the analysis of atrazine and indoxacarb residues in the experimental soil by HPLC-UV. Elevated copper concentrations did not inhibit the degradation of atrazine or indoxacarb in the experimental soil. The half-lives of both atrazine (≤19.4 d) and indoxacarb (≤18.8 d) were lower in the spiked experimental soils than the means reported in previous New Zealand and international studies, but were within the reported ranges. This study provided the first data on the fate of indoxacarb in New Zealand. Hydroxyatrazine was the only metabolite detected in the atrazine-spiked experimental soils. Significant differences between the control (Cu-1) and copper levels above 100 mg kg⁻¹ were observed for hydroxyatrazine at t₂. Significant negative correlations were observed between hydroxyatrazine and the microbiomass at t₁ and phosphatase activity at t₂ (p<0.05). These significant relationships suggest that elevated copper concentrations may alter the degradation of this metabolite in the experimental soils due copper toxicity of the soil microbial community. The results of this thesis indicate that elevated levels of copper above 100 mg kg⁻¹ negatively impact the soil microbial community and may reduce the overall health of the soil. Biodegradation is a key mechanism for the degradation of atrazine and indoxacarb in the soil, so it is important that the health of the soil microbial community is maintained. Therefore, it is recommended that atrazine and indoxacarb are only applied to soils with a total copper concentration less than 100 mg kg⁻¹. This will protect the health of the soil microbial community and prevent the potential adverse effects of copper on the degradation of pesticide metabolites in the soil.
7

Ovlivňují symbiotické bakterie odolnost skladištního roztoče Acarus siro vůči biocidním látkám? / Can symbiotic bacteria of storage mite Acarus siro alter its response to biocides?

Navrátilová, Blanka January 2022 (has links)
Storage mite Acarus siro is one of the most distributed stored product mites in the world. It infests various products (grains, dried fruits, meat products, animal feed etc.) and causes allergic reactions in humans. For these reasons, it is important to find an effective strategy to suppress or even better to eliminate the mite from the storing facilities. Historically, there have been reported cases of the mite being resistant to several pesticides. In this thesis, four populations of Acarus siro were exposed to pesticides in different concentrations - first in the form of solutions and next as a diet additive. The populations showed divergent sensitivity to four selected pesticides (pirimiphos-methyl, chlorpyriphos-methyl, deltamethrin and deltamethrin in combination with piperonyl butoxide). The biggest differences were recorded in response to solutions of pirimiphos-methyl. This pesticide was then added to standard rearing diet in five concentrations. The mite populations were exposed to this died for 3 weeks. Control and pesticide-treated diet microbiome analyses revealed that 0.0125 µg×g-1 concentration causes hormoligosis in 6L and 6Tu strains. The same concentration was responsible for microbiome change in 6Z strain. Exposure to 1,25 µg×g-1 concentration caused microbial shifts in 6Z and...
8

Photocatalytic degradation of dyes and pesticides in the presence of ions

Pete, Kwena Yvonne 03 1900 (has links)
M. Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology / Water pollution caused by organic and inorganic contaminants represents an important ecological and health hazard. Simultaneous treatment of organic and inorganic contaminants had gradually gained great scientific interest. Advanced oxidation processes such as photocatalysis, using TiO2 as a photocatalyst, have been shown to be very robust in the removal of biorecalcitrant pollutants. These methods offer the advantage of removing the pollutants, in contrast to conventional techniques. At present, the main technical challenge that hinder its commercialization remained on the post-recovery of the photocatalyst particles after water treatment. Supporting of the photocatalyst on the adsorbent surface is important as it assists during the filtration step, reducing losses of the materials and yielding better results in degrading pollutants. To overcome this challenge, in this study composite photocatalysts of TiO2/zeolite and TiO2/silica were prepared and investigated to explore the possible application in the simultaneous removal of organic and inorganic compounds from contaminated water. The main objective of this study was to investigate the heterogeneous photocatalytic degradation of organic compounds in the presence of metal ions using composite photocatalysts. The Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX), Raman spectroscopy (RS) and zeta potential (ZP) analyses were used to characterize the prepared composite photocatalysts. The successive composite photocatalysts were used in a semi-batch reactor under an irradiation intensity of 5.5 mW/m2 (protected by a quartz sleeve) at 25 ± 3°C for the photocatalytic degradation of synthetic textile (methyl orange) and agricultural (atrazine) wastewater in the presence of ions. The effect of operating parameters such as TiO2 composition on supporting material, particle size, composite photocatalyst loading, initial pollutant concentration and pH were optimized. The effects of inorganic salts and humic acid on dye and pesticides degradation were also studied, respectively. The performance of the photocatalyst reactor was evaluated on the basis of color removal, metal ion reduction, total organic carbon (TOC) reduction, intermediates product analysis and modeling of kinetics and isotherms. Different kinetic and isotherm models were introduced and applied in this work. Important aspects such as error functions with the optimal magnitude were used for the selection of the best suitable model. / European Union. City of Mikkeli, Finland. Water Research Commission (RSA)
9

Desarrollo de nuevos electrodos basados en nanoestructuras híbridas de óxidos metálicos semiconductores para aplicaciones energéticas y medioambientales.

Navarro Gázquez, Pedro José 06 July 2023 (has links)
[ES] La presente Tesis Doctoral se centra en la síntesis de nanoestructuras híbridas de TiO2/ZnO para su utilización como fotoelectrocatalizadores durante la producción de hidrógeno a partir de la rotura de la molécula de agua mediante fotoelectrocatálisis y la degradación fotoelectrocatalítica de pesticidas. La principal ventaja de las nanoestructuras híbridas de TiO2/ZnO frente a otros fotocatalizadores basados en materiales semiconductores radica en su capacidad para formar heterouniones en las que se intercalan las bandas de valencia y conducción de ambos semiconductores. Este fenómeno produce una disminución del ancho de banda del fotoelectrocatalizador y de los procesos de recombinación de los pares electrón-hueco fotogenerados y un aumento del rango de absorción de la luz, lo que mejora sus propiedades como fotoelectrocatalizadores. Las nanoestructuras híbridas de TiO2/ZnO obtenidas en la presente Tesis Doctoral se sintetizaron mediante electrodeposición de ZnO sobre nanoesponjas de TiO2. Las nanoesponjas de TiO2 se formaron mediante anodizado electroquímico de titanio en condiciones hidrodinámicas y, posteriormente, se electrodepositó ZnO sobre la superficie de las nanoesponjas de TiO2 modificando la concentración de precursor (Zn(NO3)2 0.5-60 mM), la temperatura (25-75 °C) y el tiempo (15-60 min). Además, se estudió la influencia de electrodepositar ZnO sobre nanoesponjas de TiO2 amorfo o nanoesponjas de TiO2 cristalino, observándose una mejora significativa de la actividad fotoelectrocatalítica de las nanoestructuras híbridas de TiO2/ZnO electrodepositadas sobre nanoesponjas de TiO2 cristalino. Las nanoestructuras híbridas de TiO2/ZnO sintetizadas tuvieron morfología en forma de nanoesponjas, nanobarras hexagonales, nanobarras sin definir y nanoláminas, estudiando la influencia de la concentración de Zn(NO3)2, temperatura y tiempo durante el proceso de electrodeposición de ZnO sobre su comportamiento como fotoelectrocatalizadores. Las nanoestructuras híbridas de TiO2/ZnO sintetizadas se caracterizaron mediante Microscopía Electrónica de Barrido de Emisión de Campo (FE-SEM), Espectroscopía de Energía Dispersiva de Rayos X (EDX), Microscopía Electrónica de Transmisión (TEM), Microscopía de Fuerza Atómica (AFM), Difracción de Rayos X (DRX), Espectroscopía UV-Visible y mediciones de la banda prohibida. Además, se caracterizaron fotoelectroquímicamente mediante ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis y estabilidad frente a la fotocorrosión y electroquímicamente mediante Espectroscopía de Impedancia Fotoelectroquímica (PEIS) y ensayos de Mott-Schottky. Los resultados evidenciaron que las nanoestructuras híbridas de TiO2/ZnO electrodepositadas sobre TiO2 cristalino a 75 °C durante 15 minutos con una concentración de Zn(NO3)2 de 30 mM fueron las más favorables para llevar a cabo aplicaciones fotoelectroquímicas debido a que ofrecieron buena estabilidad frente a la fotocorrosión, elevada respuesta fotoelectroquímica (177 % superior a la de las nanoesponjas de TiO2), baja resistencia a la transferencia de carga y elevada densidad de portadores de carga, en comparación con las nanoesponjas de TiO2. Por último, las nanoestructuras híbridas de TiO2/ZnO óptimas se emplearon como fotoelectrocatalizadores en aplicaciones energéticas y medioambientales. Por un lado, se evaluó la producción teórica de hidrógeno que se obtendría al utilizar las nanoestructuras híbridas de TiO2/ZnO sintetizadas en la presente Tesis Doctoral como fotoánodos durante el proceso de rotura de la molécula de agua mediante fotoelectrocatálisis. Por otro lado, se evaluó la utilización de las nanoestructuras híbridas de TiO2/ZnO óptimas en la degradación fotoelectrocatalítica de pesticidas (Imazalil) en agua, obteniéndose un porcentaje de degradación del 99.6 % llevando a cabo la degradación fotoelectrocatalítica de 10 ppm de Imazalil en Na2SO4 0.1 M durante 24 horas aplicando un potencial de 0.6 V (Ag/AgCl(KCl 3M)). / [CA] La present tesi doctoral se centra en la síntesi de nanoestructures híbrides de TiO2/ZnO per a utilitzar-les com a fotoelectrocatalitzadors durant la producció d'hidrogen a partir del trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi i la degradació fotoelectrocatalítica de pesticides. El principal avantatge de les nanoestructures híbrides de TiO2/ZnO enfront d'altres fotocatalitzadors basats en materials semiconductors radica en la seua capacitat per a formar heterojuncions en les quals s'intercalen les bandes de valència i conducció de tots dos semiconductors. Aquest fenomen produeix una disminució de l'ample de banda del fotoelectrocatalitzador i dels processos de recombinació dels parells electró-forat fotogenerats, i un augment del rang d'absorció de la llum, la qual cosa millora les seues propietats com a fotoelectrocatalitzadors. Les nanoestructures híbrides de TiO2/ZnO es van sintetitzar mitjançant electrodeposició de ZnO sobre nanosponges de TiO2. Les nanosponges de TiO2 es van formar mitjançant anodització electroquímica de titani en condicions hidrodinàmiques i, posteriorment, es va electrodepositar ZnO sobre la superfície de les nanosponges de TiO2 modificant la concentració del precursor (Zn(NO3)2 0.5-60 mm), la temperatura (25-75 °C) i el temps d'electrodeposició (15-60 min). A més, es va estudiar la influència d'electrodepositar ZnO sobre nanosponges de TiO2 amorf o nanosponges de TiO2 cristal·lí, i es va observar una millora significativa de l'activitat fotoelectrocatalítica de les nanoestructures híbrides de TiO2/ZnO en dur a terme el procés d'electrodeposició de ZnO sobre nanosponges de TiO2 cristal·lí. Les nanoestructures híbrides de TiO2/ZnO sintetitzades van tindre morfologia en forma de nanosponges, nanobarres hexagonals, nanobarres sense definir i nanolàmines, i es va estudiar la influència de la concentració de Zn(NO3)2, la temperatura i el temps durant el procés d'electrodeposició de ZnO sobre el seu comportament com a fotoelectrocatalitzadors. Les nanoestructures híbrides de TiO2/ZnO es van caracteritzar mitjançant microscòpia electrònica d'escombratge d'emissió de camp, espectroscòpia de raigs X per dispersió d'energia, microscòpia electrònica de transmissió, microscòpia de força atòmica, difracció de raigs X, espectroscòpia UV visible i mesuraments de la banda prohibida. D'altra banda, es van caracteritzar fotoelectroquímicament mitjançant assajos de trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi i estabilitat enfront de la fotocorrosió, i electroquímicament mitjançant espectroscòpia d'impedància fotoelectroquímica i assajos de Mott-Schottky. Els resultats van evidenciar que les nanoestructures híbrides de TiO2/ZnO electrodepositades sobre TiO2 cristal·lí a 75°C durant 15 minuts amb una concentració de Zn(NO3)2 de 30 mm van ser les més favorables per a dur a terme aplicacions fotoelectroquímiques, pel fet que van oferir bona estabilitat enfront de la fotocorrosió, elevada resposta fotoelectroquímica (un 177 % superior a la de les nanosponges de TiO2), baixa resistència a la transferència de càrrega i elevada densitat de portadors de càrrega, en comparació amb les nanosponges de TiO2. Finalment, les nanoestructures híbrides de TiO2/ZnO òptimes es van emprar com a fotoelectrocatalitzadors en aplicacions energètiques i mediambientals. D'una banda, es va avaluar la producció teòrica d'hidrogen que s'obtindria en utilitzar les nanoestructures híbrides de TiO2/ZnO sintetitzades en la present tesi doctoral com a fotoànodes durant el procés de trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi. D'altra banda, es va avaluar la utilització de les nanoestructures híbrides de TiO2/ZnO òptimes en la degradació fotoelectrocatalítica de pesticides (Imazalil) en aigua, i es va obtenir un percentatge de degradació del 99.6% duent a terme la degradació fotoelectrocatalítica de 10 ppm d'Imazalil en Na2SO4 0.1 M durant 24 h aplicant un potencial de 0.6 V (Ag/AgCl(KCl 3M)). / [EN] This Doctoral Thesis focuses on synthesizing TiO2/ZnO hybrid nanostructures to be used as photoelectrocatalysts in energy and environmental applications, particularly hydrogen production from water splitting by photoelectrocatalysis and photoelectrocatalytic degradation of pesticides. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials is their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This phenomenon produces a decrease in the band gap of the nanostructures, the recombination processes of the photogenerated electron-hole pairs, and an increase in the light absorption range, which improves their properties as photoelectrocatalysts. The TiO2/ZnO hybrid nanostructures formed in this Doctoral Thesis were synthesized by electrodeposition of ZnO on TiO2 nanosponges. First, TiO2 nanosponges were formed by electrochemical anodization of titanium under hydrodynamic conditions (3000 rpm) and, subsequently, ZnO was electrodeposited on the surface of the TiO2 nanosponges by modifying the precursor concentration (Zn(NO3)2 0.5 - 60 mM), the temperature (25 - 75 °C) and the electrodeposition time (15 - 60 min). In addition, the influence of performing the ZnO electrodeposition on amorphous TiO2 nanosponges (before the thermal treatment) or crystalline TiO2 nanosponges (after the thermal treatment) was studied, showing a significant improvement in the photoelectrocatalytic activity of TiO2/ZnO hybrid nanostructures by carrying out the ZnO electrodeposition process on crystalline TiO2 nanosponges. In this Doctoral Thesis, TiO2/ZnO hybrid nanostructures with morphologies of nanosponges, hexagonal nanorods, undefined nanorods, and nanosheets were synthesized by studying the influence of Zn(NO3)2 concentration, temperature and time during the ZnO electrodeposition process. In addition, the performance of TiO2/ZnO hybrid nanostructures as photoelectrocatalysts was studied. The synthesized TiO2/ZnO hybrid nanostructures were characterized morphologically, photoelectrochemically, and electrochemically. On the one hand, they were morphologically characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Diffraction X-Ray (XRD), UV-Visible Spectroscopy and band gap measurements. On the other hand, they were characterized photoelectrochemically by e water splitting and stability against photocorrosion tests and electrochemically by Photoelectrochemical Impedance Spectroscopy (PEIS) and Mott-Schottky tests. The results showed that TiO2/ZnO hybrid nanostructures electrodeposited on crystalline TiO2 at 75 °C for 15 minutes with a Zn(NO3)2 concentration of 30 mM were the most favourable for carrying out photoelectrochemical applications because they offered good stability against photocorrosion, high photoelectrochemical response (177 % higher than that of TiO2 nanosponges), low resistance to charge transfer and high density of charge carriers, compared to TiO2 nanosponges. Finally, the optimal TiO2/ZnO hybrid nanostructures were used as photoelectrocatalysts in energy and environmental applications. On the one hand, the theoretical hydrogen production obtained with the TiO2/ZnO hybrid nanostructures synthesized in this Doctoral Thesis during the water splitting tests was evaluated. On the other hand, the use of the optimal TiO2/ZnO hybrid nanostructures as photoelectrocatalysts in the photoelectrocatalytic degradation of pesticides (Imazalil) in water was evaluated, obtaining a degradation percentage of 99.6 % carrying out the photoelectrocatalytic degradation of 10 ppm of Imazalil in Na2SO4 0.1 M for 24 hours applying a potential of 0.6 VAg/AgCl (3M KCl). / Agradezco al Ministerio de Ciencia e Innovación la concesión de la subvención proporcionada por el Sistema Nacional de Garantía Juvenil (PEJ2018- 003596-A-AR), al Ministerio de Economía, Industria y Competitividad la concesión del proyecto CTQ2016-79203-R y al Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación la concesión del proyecto PID2019-105844RB- I00/MCIN/AEI/ 10.13039/501100011033, en los cuales he podido participar durante el desarrollo de la presente Tesis Doctoral. / Navarro Gázquez, PJ. (2023). Desarrollo de nuevos electrodos basados en nanoestructuras híbridas de óxidos metálicos semiconductores para aplicaciones energéticas y medioambientales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194708

Page generated in 0.1135 seconds