• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 46
  • 46
  • 11
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Contaminant Release from Melting Snow

Meyer, Torsten 18 March 2010 (has links)
Snow efficiently scavenges organic contaminants from the atmosphere. Those chemicals can be released in short, concentrated pulses during spring snowmelt, potentially affecting both aquatic and terrestrial environments. In order to investigate the behavior of organic contaminants in melting snow laboratory experiments were conducted using artificial snow spiked with the organic target substances naphthalene, phenanthrene, pyrene, benzo(ghi)perylene, lindane, and atrazine. The behavior of those substances during melting is dependent on their partitioning between the different phases present within the bulk snow. Very water soluble organic chemicals, such as atrazine, are preferentially released at an early stage of melting similar to inorganic ions. This first chemical flush becomes more pronounced when a deep, aged, and relatively homogeneous snow pack is exposed to intense melting. Hydrophobic substances attached to particles, such as high molecular weight polycyclic aromatic hydrocarbons, are often released at the very end of the melt period. Dirt cones at the surface of a deep snow pack amplify this late chemical enrichment. Whereas chemicals that are clearly hydrophilic or hydrophobic are likely to be released in pulse loads, the snowmelt behavior of chemicals with intermediate partitioning properties, such as lindane, is more dependent on the varying snow pack and melt characteristics. A notable fraction of volatile chemicals may transfer from the melting snow pack to the lower atmosphere due to evaporation. Shallow snow covers in temperate regions with depths below 10cm that are exposed to recurrent melt phases during the winter are less likely to lead to pulse releases. When the melt water runs off as overland flow over frozen ground, pollutants are directly transferred into catchment streams, and their water quality is affected most. Melt water flow along the soil subsurface dilutes and buffers organic contaminant loads. The findings of this laboratory study may assist in the development of contaminant fate models that includes snowmelt processes. The results may further help to explain observations of organic contaminants in natural snow environments.
2

Organic Contaminant Release from Melting Snow

Meyer, Torsten 18 March 2010 (has links)
Snow efficiently scavenges organic contaminants from the atmosphere. Those chemicals can be released in short, concentrated pulses during spring snowmelt, potentially affecting both aquatic and terrestrial environments. In order to investigate the behavior of organic contaminants in melting snow laboratory experiments were conducted using artificial snow spiked with the organic target substances naphthalene, phenanthrene, pyrene, benzo(ghi)perylene, lindane, and atrazine. The behavior of those substances during melting is dependent on their partitioning between the different phases present within the bulk snow. Very water soluble organic chemicals, such as atrazine, are preferentially released at an early stage of melting similar to inorganic ions. This first chemical flush becomes more pronounced when a deep, aged, and relatively homogeneous snow pack is exposed to intense melting. Hydrophobic substances attached to particles, such as high molecular weight polycyclic aromatic hydrocarbons, are often released at the very end of the melt period. Dirt cones at the surface of a deep snow pack amplify this late chemical enrichment. Whereas chemicals that are clearly hydrophilic or hydrophobic are likely to be released in pulse loads, the snowmelt behavior of chemicals with intermediate partitioning properties, such as lindane, is more dependent on the varying snow pack and melt characteristics. A notable fraction of volatile chemicals may transfer from the melting snow pack to the lower atmosphere due to evaporation. Shallow snow covers in temperate regions with depths below 10cm that are exposed to recurrent melt phases during the winter are less likely to lead to pulse releases. When the melt water runs off as overland flow over frozen ground, pollutants are directly transferred into catchment streams, and their water quality is affected most. Melt water flow along the soil subsurface dilutes and buffers organic contaminant loads. The findings of this laboratory study may assist in the development of contaminant fate models that includes snowmelt processes. The results may further help to explain observations of organic contaminants in natural snow environments.
3

Bioavailability of organic contaminants in a changing climate

Ripszam, Matyas January 2015 (has links)
The effects of predicted future climate change was investigated with special emphasis on the association of organic contaminants with dissolved organic carbon (DOC) in the Baltic Sea. An automated method was developed for the measurements of DOC - water distribution constants at realistic DOC concentrations in brackish water. The method proved to be valid for 30 organic contaminants with different structural elements in the 5 – 100 mg car bon/L DOC concentration range. There were limitations of this method. Firstly, its applicability is limited towards contaminants with lower affinity to DOC. Secondly, at higher (>100 mg carbon/L) DOC concentrations the sorption of contaminants was underest imated. Afterwards, water samples were collected from 15 points within the Baltic Sea in a north - south gradient t o examine the spatial differences in DOC characteristics and sorption properties . The DOC samples were analyzed using proton nuclear magnetic resonance and ultraviolet spectroscopy. Results from both techniques indicated that the aromatic nature of the DOC pool increased towards the northern Baltic Sea. This was expected as the freshwater inflow has high significance in controlling the hydrograp hic conditions in the Bothnian Bay. Sorption of organic contaminants was subsequently measured in the same samples. The results showed decreased sorption from north to south for hydrophobic contaminants such as chlorinated benzenes but for contaminants lik e tributyl - phosphate no spatial tendencies were observed. The data generated was used to determine molecular descriptors of DOC using linear free energy relationships. The results indicated a higher significance of hy drogen bond donor/acceptor functional g roups of the DOC in the south. Changes in contaminant distribution were simulated in model pelagic ecosystems at possible endpoints predicted by future climate change scenarios. Separate and combined effects of temperature a nd DOC were studied in mesocosms. The results indicated interesting tendencies. Increased temperature resulted in increased losses in the amounts of organic contaminants. Increased DOC levels promoted sedimentation and sorption of contaminants to particulate matter and biota. Hi gher amounts of contaminants were retained. The combined effects of the two factors led to and overall decrease in dissolved amounts. Higher losses or increased sedimentation and sorption to particles were also observed depending on contaminant properties. / EcoChange
4

Modeling Photolytic Advanced Oxidation Processes for the Removal of Trace Organic Contaminants

Zhang, Tianqi, Zhang, Tianqi January 2017 (has links)
Advanced oxidation processes (AOPs) are commonly used for the destruction of persistent trace organic contaminants (TOrCs) that survive conventional wastewater treatment processes. Three types of AOPs, UV/H2O2, sunlight photolysis and photo-Fenton are experimentally investigated and mathematically quantified to anticipate the fate of TOrCs during oxidation processes, specifically addressing the significant effect of reaction by-products and water matrix on oxidation efficiencies. Hydrogen peroxide UV photolysis is among the most widely used AOPs for the destruction of TOrCs in waters destined for reuse. Previous kinetic models of UV/H2O2 focus on the dynamics of hydroxyl radical production and consumption, as well as the reaction of the target organic with hydroxyl radicals. In this work, we build a predictive kinetic model for the destruction of p-cresol by hydrogen peroxide photolysis based on a complete reaction mechanism that includes reactions of intermediates with hydroxyl radicals. The results show that development of a predictive kinetic model to evaluate process performance requires consideration of the complete reaction mechanism, including reactions of intermediates with hydroxyl radicals. Applying the model to an annular flow-through reactor with reflecting walls, the model mathematically demonstrates that the wall reflectivity significantly enhances the rate of conversion of the target, accounting for the UV light reflection from the reacting walls, as well as the hydrodynamics of the annular flow. Direct and indirect sunlight photolysis is critically important in the breakdown of contaminants in effluent wastewater. The fate of a suite of TOrCs and estrogenic activity were investigated in an effluent-dependent stream. Some TOrCs, which are not sufficiently attenuated through biodegradation and soil adsorption were destructed obviously with distance of travel in the stream. Independent experiments, conducted in batch reactor with 17α-ethinylestradiol (EE2) spiked in effluent showed that attenuation of estrogenic compounds maybe due in part to indirect photolysis caused by formation of reactive species from sunlight absorption. Further investigation was conducted using selective probe compounds to characterize reactive species. And results showed that singlet oxygen generated from excited state of effluent organic matter was responsible for essentially all observed transformations of targets in the effluent in Tucson. To mathematically quantify the photo-Fenton AOP, a kinetic model is proposed for the photolysis of Fe3+ hydroxo complexes at low pH (pH ≤ 3.0). The model incorporates elementary reactions of the Fenton-like and UV/H2O2 system. Iron speciation and photochemical parameters, including the molar absorptivities of light-absorbing species and the quantum yields of Fe3+ and FeOH2+ hydrolysis are experimentally validated. However, the predicted, time-dependent Fe2+ concentrations during Fe3+ photolysis are much lower than measured. The possible missing elements in the model could be (i) quenching of OH radicals by unknown species, or/and (ii) shielding of Fe2+ by unknown compounds at the beginning of the process.
5

Development of low-cost adsorbents from biomass residues for the removal of organic contaminants and heavy metals from aqueous solutions.

Madduri, Sunith Babu 25 November 2020 (has links)
Increasing population across the globe paved the way for rapid growth in industrialization. Pharmaceuticals, automotive, textiles, agriculture, electronics, electrical and many other industries discharge different types of heavy metals, dyes and organic contaminants into ground water. These discharges are released into lakes and rivers without prior treatment causing huge environmental impact to the environment. Among different remediation techniques, adsorption was considered the most promising method because of its low-cost and high efficiency. Biomass is considered as the most practical and renewable source for production of bio products and biofuels. Biomass is also used for carbon sequestration and as an essential element to produce hydrochar and biochar which are considered as the 21st century black gold. Hydrochar and biochar can be used as an excellent low-cost adsorbent for the removal of heavy metals, dyes and organic contaminants from water. This dissertation work focuses on, firstly, development of novel oxone treated hydrochar as an adsorbent for the efficient removal of Pb(II) and Methylene Blue (MB) from aqueous solutions. Secondly, preparing novel ozone oxidized hydrochar treated with polyethyleneimine for removal of Remzol Brilliant Blue (RBB) and Remzol Reactive Black (RRB) dyes from aqueous solutions. Thirdly, producing high-performance CO2 activated biochar as an adsorbent for efficient removal of Aniline from aqueous solution. All prepared hydrochar and biochar adsorbents were characterized by SEM, TGA, FTIR, Elemental analysis, conductometric titration, and N2 adsorption-desorption isothermal analyses (BET and BJH). The adsorption capacities were determined by Atomic absorption spectrometry (AAS) and Ultraviolet–visible spectroscopy (UV-VIS) respectively. The adsorption capacity of each prepared biochar or hydrochar was determined and both kinetic and isothermal studies were performed. The optimal preparation conditions and adsorption parameters were determined for each adsorbent.
6

Modified biochar adsorbents for aqueous contaminant remediation

Herath, Herath Mudiyanselage Nimeshika Amali 30 April 2021 (has links)
Continuous population growth and rapid industrial advancement and development have paved the way for ever increasing environmental pollution. At present, water pollution is a serious global issue that threatens environmental sustainability. The contamination of aquatic bodies with potentially toxic organic and inorganic substances are the result of world-wide anthropogenic activities. These pollutants can have detrimental health consequences on humans and ecosystems. Over the past decades, techniques such as chemical precipitation, ion-exchange, adsorption, membrane filtration, and electrocoagulation-flocculation have been developed and employed for the treatment of drinking and wastewater. Among the currently available techniques, pollutant removal by adsorption is most promising due to its cost-effectiveness, simplicity in operation, environmental friendliness, and abundance of adsorbents. This study emphasized the utilization of biochar (BC), after appropriate surface modification, for the removal of potentially toxic contaminants. In the first study, a base activated biochar was synthesized by treating the biochar with potassium hydroxide (KOH) at 700 ℃ in a muffle furnace for 1 h. The resulting high surface area biochar (KOHBC) was used for the removal of Cr(VI), Pb(II) and Cd(II). In the second study, a biochar-supported polyaniline hybrid was synthesized for aqueous chromium and nitrate adsorption. Introduction of amine and imine groups to the biochar facilitated the removal of these contaminants. In the final study, a composite containing Fe-Ti oxide/biochar (Fe2TiO5/BC) was synthesized for sorptive removal of metal cations, oxy anions, inorganics, and organic contaminants from aqueous solutions. Additionally, this composite was used as a photocatalyst towards aqueous methylene blue (MB) degradation. The surface chemistry and composition of these adsorbents were examined by PZC SEM, TEM, XPS, FTIR, TGA, elemental analysis, and surface area measurements.
7

REMOVAL OF ORGANIC CONTAMINANTS FROM WATER BY POLYMERIC RESINS: PREDICTIVE MODELING AND DEVELOPMENT OF RESIN-PD COMPOSITES

Jadbabaei, Nastaran January 2016 (has links)
Discharge of many organic contaminants (OCs) to the environment from industries such as pharmaceuticals, pesticides, dyestuffs, and chemical intermediates is one of the major concerns to human health and the ecosystem due to their high toxicity. Existing water and wastewater treatment techniques were not specifically designed to remove OCs, and the elimination rate can vary from negligible to over 90%. Therefore, development of treatment technologies to efficiently remove OCs from water and wastewater effluents is required. Polymeric resins are an alternative for treatment since they can selectively target certain OCs as they can be custom-synthesized during polymerization by including desired functional groups to the matrix. However, additional efforts and cost are needed for the regeneration of the exhausted resins and recycling of the sorbed contaminants. Palladium based catalysts supported on polymeric resins are a promising method to overcome regeneration problems and convert contaminants to less toxic chemicals. The main goals of this research were to (1) develop predictive models for the sorption of cationic OCs by resins based on a mechanistic understanding of the sorption mechanisms of a range of cationic OCs on two cation exchange resins and (2) synthesize novel resin-based Pd catalysts to selectively remove two toxic contaminants, i.e., 4-chlorophenol and 4-nitrophenol, convert them to less toxic chemicals, and evaluate the possibility of in situ regeneration of the spent resins. The sorption study indicated that electrostatic (ion exchange) and nonelectrostatic (adsorption) interactions between nonpolar moieties of solute and sorbent have synergistic effects on sorption. It also established predictive models for estimating the sorbed concentrations of a target contaminant on a given resin at any environmentally relevant pH. Our findings point to the significant role of adsorption in the overall catalytic reactivity. The rate determining step (RDS) switched from adsorption to surface reaction with increasing concentration of the reactant. This observation was confirmed by good fitting of the reaction kinetics to the Langmuir-Hinshelwood model developed based on the respective RDS. Our results demonstrated that Pd-resin composites are advantageous to water treatment because they can avoid the conventional resin regeneration process and enable recycling of reaction products of smaller environmental impacts. / Civil Engineering
8

Attenuation of Trace Organic Compounds by Physical and Chemical Processes in Water Reuse

Park, Minkyu, Park, Minkyu January 2016 (has links)
Realized and potential threats of water scarcity due in part to global climate change have increased the interest in potable reuse of municipal wastewater. Recalcitrant trace organic compounds (TOrCs), including pharmaceuticals, steroid hormones and industrial compounds in wastewater are often not efficiently removed by conventional wastewater treatment processes, thereby ubiquitously occurs in natural and wastewater effluents. Advanced water treatment processes including advanced oxidation processes (AOPs), activated carbon adsorption and membrane separation processes have been demonstrated to efficaciously attenuate many classes of TOrCs. In this dissertation, attenuation of TOrCs by ozone oxidation, powdered activated carbon (PAC) and nanofiltration membrane and their monitoring strategies were demonstrated in water reuse applications. Particularly, the first main chapter attempted to elucidate the use of indicator/surrogate for predicting TOrC attenuation by ozone oxidation in a theoretical basis. A semi-empirical model was developed, which successfully predicted many TOrCs with various oxidation kinetics simultaneously. The following chapter was pertaining to development of exploratory models to predict TOrC abatement by ozone. It was concluded that principal component (PC) analysis in conjunction with artificial neural network (ANN) resulted in precise and robust prediction of TOrC attenuation. In addition to oxidation process, kinetic of TOrC adsorption by PAC was scrutinized subsequently. It was found that the initial-phase adsorption was controlled by surface reaction due to hydrophobic interaction. In addition, correlation between surrogate reduction and TOrC attenuation was independent upon water quality at the early phase of adsorption, which was explained theoretically. In the last chapter, synergistic effects of NF membrane in conjunction with pre-ozonation was investigated for TOrC abatement in brine. As a result, all the tested TOrCs were efficaciously attenuated and not quantifiable due to their concentration below limit of quantification. In addition, ozonation also alleviated organic fouling potential substantially.
9

PERFLUOROALKYL ACIDS AND OTHER TRACE ORGANICS IN WASTEDERIVED ORGANIC PRODUCTS: OCCURRENCE, LEACHABILITY, AND PLANT UPTAKE

Rooney Kim Lazcano (7038074) 14 August 2019 (has links)
<p>Waste-derived organic products are nutrient-rich materials often applied to agricultural land as a fertilizer to enhance agricultural production and soil quality. Commercially available biosolid-based products, which are sold and distributed in bags or bulk, are rapidly gaining popularity for urban and suburban use. Although biosolid-derived products have many benefits, they may contain trace organic contaminants such as per- and polyfluoroalkyl acids (PFAAs) and pharmaceutical and personal care products (PPCPs), in varying levels, depending on waste source composition. These organic compounds have been used in a variety of consumer and industrial products and are known to accumulate in biosolids due to their recalcitrance in conventional wastewater treatment processes. Thus, the application of commercially available biosolids-based products on urban and suburban gardens may lead to transfer and accumulation of organic contaminants into food crops, raising food safety concerns. Most studies to date have focused on municipal biosolids application on agricultural lands with very few studies focused on commercial products available for home and urban gardens. For the latter, the evaluations of bioavailability and subsequent plant uptake of organic contaminants from biosolids have also often been conducted by adding organic contaminants to the growing media (e.g., soil or hydroponic) at a concentration that greatly exceed environmentally relevant concentrations. Moreover, there are currently no studies evaluating leaching and plant uptake potential of contaminants from commercially available (e.g., local stores) biosolids. The research described in this dissertation 1) assessed the occurrence of PFAAs and representative PPCPs in commercially available biosolid-based products and their porewater concentrations in saturated media as a measure of bioavailability and leachability; 2) investigated how heat-treatment, composting, blending and thermal hydrolysis processes on biosolids to convert them to commercial biosolid-based products affect PFAA concentrations in the production of commercial biosolid-based product; and 3) assessed the bioavailability and plant uptake of PFAAs and targeted PPCPs by kale and turnips grown in soil-less potting media amended with Milorganite (a commercially available biosolids-based fertilizer product) at the recommended rate and four times the recommended rate.</p><p>The biosolid-based products displayed varying levels of organic contaminants. Higher PFAA concentrations were detected in biosolid-based products compared to nonbiosolid-based products. The common treatment processes used in taking biosolids to commercially available products were ineffective in reducing PFAA levels in the products except for blending with other essentially PFAA-free materials, thus served as a simple dilution. Porewater concentrations of PFAAs and PPCPs as an indicator of leachability and bioavailability were higher for the less hydrophobic compounds (e.g., short-chain PFAAs and diphenhydramine and carbamazepine with lower octanol-water partition coefficient). Leachability alone did not explain the observed plant uptake potential of PFAAs and PPCPs. With similar leachability and molecular weight/size between diphenhydramine and carbamazepine, higher uptake was observed with a positively charged compound (diphenhydramine compared to a neutral compound (carbamazepine). However, not all positively charged compounds were taken up by the plant. Azithromycin, a positively charged compound, had lower uptake than other contaminants which may be due to its large molecular size compared to diphenhydramine. Higher concentrations of miconazole, triclosan, and triclocarban were found in the biosolids-fertilizer; however, these compounds had low leachabilities and limited uptake by plants. Also, for PPCPs, the application rates of biosolid-based products did not necessarily correlate with the higher uptake and translocation of contaminants to the above-ground portion of plants. </p><p>This study provides an evaluation of commercially available waste-derived organic products under condition comparable to home and urban garden setting. Although biosolids-based products can serve as alternatives to synthetic fertilizers, they contain higher levels of trace organic contaminants than nonbiosolid-organic products. Common biosolids treatment processes are ineffective for reducing the levels of trace organic contaminants in biosolids, particularly for PFAAs. Thus, it is critical to control the sources contributing to the higher level of these contaminants in biosolids-based products. Also, regulations (e.g., triclosan and triclocarban) and replacements (e.g., longer-chain PFAAs to short-chain PFAAs) of persistent trace organic chemicals have led to a reduction in their levels in biosolids-based products. Although longer chain PFAAs are more likely to bioaccumulate and persistent than the replacement short-chain alternatives, the current study has shown that the short-chain PFAAs are more readily taken up to edible parts of plants than longer-chain PFAAs even when applying at the recommended fertilizer rate. Thus, the current movement to replace longer chain PFAAs with short chains has the potential to result in higher total PFAA concentrations being bioavailable for plant uptake, thus increasing the risk of food contamination by PFAAs. </p>
10

Tools for Evaluating the Fate and Bioaccumulation of Organic Compounds in Aquatic Ecosystems

Nfon, Erick January 2009 (has links)
The bioaccumulation of organic contaminants in aquatic ecosystems has been a key focus in environmental toxicology over the last decades. Bioaccumulation is a key concept in ecological risk assessments since it controls the internal dose of potential environmental contaminants. Information on the bioaccumulation of contaminants is used by regulatory authorities in the development of water quality standards, categorizing substances that are potential hazards and quantifying the risk of chemicals to human health. A basis for identifying priority chemicals has been the use of the octanol-water partition coefficient (KOW) as a criterion to estimate bioaccumulation potential. However, recognizing that the bioaccumulation process is not controlled by the hydrophobicity of a chemical alone, this thesis proposes a set of tools, incorporating chemical properties, environmental characteristics and physiological properties of organisms, to study the bioaccumulation of contaminants in aquatic ecosystems.  In striving to achieve this objective, a tool based on an equilibrium lipid partitioning approach was used in Paper I to evaluate monitoring data for bioaccumulation of organic contaminants. In Papers II and III, mechanistic based modelling tools were developed to describe bioaccumulation of hydrophobic compounds in aquatic food webs. In Paper IV, the bioaccumulation of organic compounds in aquatic food chains was studied using stable isotopes of nitrogen. The mechanistic fate and food web models developed in this thesis provide regulators and chemical manufacturers with a means of communicating scientific information to the general public and readily applicable mechanistic fate and food web models that are easily modified for evaluative assessments purposes.

Page generated in 0.0703 seconds