Return to search

Detecção de fraudes em cartões: um classificador baseado em regras de associação e regressão logística / Card fraud detection: a classifier based on association rules and logistic regression

Os cartões, sejam de crédito ou débito, são meios de pagamento altamente utilizados. Esse fato desperta o interesse de fraudadores. O mercado de cartões enxerga as fraudes como custos operacionais, que são repassados para os consumidores e para a sociedade em geral. Ainda, o alto volume de transações e a necessidade de combater as fraudes abrem espaço para a aplicação de técnicas de Aprendizagem de Máquina; entre elas, os classificadores. Um tipo de classificador largamente utilizado nesse domínio é o classificador baseado em regras. Entretanto, um ponto de atenção dessa categoria de classificadores é que, na prática, eles são altamente dependentes dos especialistas no domínio, ou seja, profissionais que detectam os padrões das transações fraudulentas, os transformam em regras e implementam essas regras nos sistemas de classificação. Ao reconhecer esse cenário, o objetivo desse trabalho é propor a uma arquitetura baseada em regras de associação e regressão logística - técnicas estudadas em Aprendizagem de Máquina - para minerar regras nos dados e produzir, como resultado, conjuntos de regras de detecção de transações fraudulentas e disponibilizá-los para os especialistas no domínio. Com isso, esses profissionais terão o auxílio dos computadores para descobrir e gerar as regras que embasam o classificador, diminuindo, então, a chance de haver padrões fraudulentos ainda não reconhecidos e tornando as atividades de gerar e manter as regras mais eficientes. Com a finalidade de testar a proposta, a parte experimental do trabalho contou com cerca de 7,7 milhões de transações reais de cartões fornecidas por uma empresa participante do mercado de cartões. A partir daí, dado que o classificador pode cometer erros (falso-positivo e falso-negativo), a técnica de análise sensível ao custo foi aplicada para que a maior parte desses erros tenha um menor custo. Além disso, após um longo trabalho de análise do banco de dados, 141 características foram combinadas para, com o uso do algoritmo FP-Growth, gerar 38.003 regras que, após um processo de filtragem e seleção, foram agrupadas em cinco conjuntos de regras, sendo que o maior deles tem 1.285 regras. Cada um desses cinco conjuntos foi submetido a uma modelagem de regressão logística para que suas regras fossem validadas e ponderadas por critérios estatísticos. Ao final do processo, as métricas de ajuste estatístico dos modelos revelaram conjuntos bem ajustados e os indicadores de desempenho dos classificadores também indicaram, num geral, poderes de classificação muito bons (AROC entre 0,788 e 0,820). Como conclusão, a aplicação combinada das técnicas estatísticas - análise sensível ao custo, regras de associação e regressão logística - se mostrou conceitual e teoricamente coesa e coerente. Por fim, o experimento e seus resultados demonstraram a viabilidade técnica e prática da proposta. / Credit and debit cards are two methods of payments highly utilized. This awakens the interest of fraudsters. Businesses see fraudulent transactions as operating costs, which are passed on to consumers. Thus, the high number of transactions and the necessity to combat fraud stimulate the use of machine learning algorithms; among them, rule-based classifiers. However, a weakness of these classifiers is that, in practice, they are highly dependent on professionals who detect patterns of fraudulent transactions, transform them into rules and implement these rules in the classifier. Knowing this scenario, the aim of this thesis is to propose an architecture based on association rules and logistic regression - techniques studied in Machine Learning - for mining rules on data and produce rule sets to detect fraudulent transactions and make them available to experts. As a result, these professionals will have the aid of computers to discover the rules that support the classifier, decreasing the chance of having non-discovered fraudulent patterns and increasing the efficiency of generate and maintain these rules. In order to test the proposal, the experimental part of the thesis has used almost 7.7 million transactions provided by a real company. Moreover, after a long process of analysis of the database, 141 characteristics were combined using the algorithm FP-Growth, generating 38,003 rules. After a process of filtering and selection, they were grouped into five sets of rules which the biggest one has 1,285 rules. Each of the five sets was subjected to logistic regression, so their rules have been validated and weighted by statistical criteria. At the end of the process, the goodness of fit tests were satisfied and the performance indicators have shown very good classification powers (AUC between 0.788 and 0.820). In conclusion, the combined application of statistical techniques - cost sensitive learning, association rules and logistic regression - proved being conceptually and theoretically cohesive and coherent. Finally, the experiment and its results have demonstrated the technical and practical feasibilities of the proposal.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-01022016-204144
Date11 December 2015
CreatorsPaulo Henrique Maestrello Assad Oliveira
ContributorsAlair Pereira do Lago, Edson Satoshi Gomi, Roberto Hirata Junior
PublisherUniversidade de São Paulo, Ciência da Computação, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds