Spelling suggestions: "subject:"association rule learning"" "subject:"asssociation rule learning""
1 |
Detecção de fraudes em cartões: um classificador baseado em regras de associação e regressão logística / Card fraud detection: a classifier based on association rules and logistic regressionOliveira, Paulo Henrique Maestrello Assad 11 December 2015 (has links)
Os cartões, sejam de crédito ou débito, são meios de pagamento altamente utilizados. Esse fato desperta o interesse de fraudadores. O mercado de cartões enxerga as fraudes como custos operacionais, que são repassados para os consumidores e para a sociedade em geral. Ainda, o alto volume de transações e a necessidade de combater as fraudes abrem espaço para a aplicação de técnicas de Aprendizagem de Máquina; entre elas, os classificadores. Um tipo de classificador largamente utilizado nesse domínio é o classificador baseado em regras. Entretanto, um ponto de atenção dessa categoria de classificadores é que, na prática, eles são altamente dependentes dos especialistas no domínio, ou seja, profissionais que detectam os padrões das transações fraudulentas, os transformam em regras e implementam essas regras nos sistemas de classificação. Ao reconhecer esse cenário, o objetivo desse trabalho é propor a uma arquitetura baseada em regras de associação e regressão logística - técnicas estudadas em Aprendizagem de Máquina - para minerar regras nos dados e produzir, como resultado, conjuntos de regras de detecção de transações fraudulentas e disponibilizá-los para os especialistas no domínio. Com isso, esses profissionais terão o auxílio dos computadores para descobrir e gerar as regras que embasam o classificador, diminuindo, então, a chance de haver padrões fraudulentos ainda não reconhecidos e tornando as atividades de gerar e manter as regras mais eficientes. Com a finalidade de testar a proposta, a parte experimental do trabalho contou com cerca de 7,7 milhões de transações reais de cartões fornecidas por uma empresa participante do mercado de cartões. A partir daí, dado que o classificador pode cometer erros (falso-positivo e falso-negativo), a técnica de análise sensível ao custo foi aplicada para que a maior parte desses erros tenha um menor custo. Além disso, após um longo trabalho de análise do banco de dados, 141 características foram combinadas para, com o uso do algoritmo FP-Growth, gerar 38.003 regras que, após um processo de filtragem e seleção, foram agrupadas em cinco conjuntos de regras, sendo que o maior deles tem 1.285 regras. Cada um desses cinco conjuntos foi submetido a uma modelagem de regressão logística para que suas regras fossem validadas e ponderadas por critérios estatísticos. Ao final do processo, as métricas de ajuste estatístico dos modelos revelaram conjuntos bem ajustados e os indicadores de desempenho dos classificadores também indicaram, num geral, poderes de classificação muito bons (AROC entre 0,788 e 0,820). Como conclusão, a aplicação combinada das técnicas estatísticas - análise sensível ao custo, regras de associação e regressão logística - se mostrou conceitual e teoricamente coesa e coerente. Por fim, o experimento e seus resultados demonstraram a viabilidade técnica e prática da proposta. / Credit and debit cards are two methods of payments highly utilized. This awakens the interest of fraudsters. Businesses see fraudulent transactions as operating costs, which are passed on to consumers. Thus, the high number of transactions and the necessity to combat fraud stimulate the use of machine learning algorithms; among them, rule-based classifiers. However, a weakness of these classifiers is that, in practice, they are highly dependent on professionals who detect patterns of fraudulent transactions, transform them into rules and implement these rules in the classifier. Knowing this scenario, the aim of this thesis is to propose an architecture based on association rules and logistic regression - techniques studied in Machine Learning - for mining rules on data and produce rule sets to detect fraudulent transactions and make them available to experts. As a result, these professionals will have the aid of computers to discover the rules that support the classifier, decreasing the chance of having non-discovered fraudulent patterns and increasing the efficiency of generate and maintain these rules. In order to test the proposal, the experimental part of the thesis has used almost 7.7 million transactions provided by a real company. Moreover, after a long process of analysis of the database, 141 characteristics were combined using the algorithm FP-Growth, generating 38,003 rules. After a process of filtering and selection, they were grouped into five sets of rules which the biggest one has 1,285 rules. Each of the five sets was subjected to logistic regression, so their rules have been validated and weighted by statistical criteria. At the end of the process, the goodness of fit tests were satisfied and the performance indicators have shown very good classification powers (AUC between 0.788 and 0.820). In conclusion, the combined application of statistical techniques - cost sensitive learning, association rules and logistic regression - proved being conceptually and theoretically cohesive and coherent. Finally, the experiment and its results have demonstrated the technical and practical feasibilities of the proposal.
|
2 |
Detecção de fraudes em cartões: um classificador baseado em regras de associação e regressão logística / Card fraud detection: a classifier based on association rules and logistic regressionPaulo Henrique Maestrello Assad Oliveira 11 December 2015 (has links)
Os cartões, sejam de crédito ou débito, são meios de pagamento altamente utilizados. Esse fato desperta o interesse de fraudadores. O mercado de cartões enxerga as fraudes como custos operacionais, que são repassados para os consumidores e para a sociedade em geral. Ainda, o alto volume de transações e a necessidade de combater as fraudes abrem espaço para a aplicação de técnicas de Aprendizagem de Máquina; entre elas, os classificadores. Um tipo de classificador largamente utilizado nesse domínio é o classificador baseado em regras. Entretanto, um ponto de atenção dessa categoria de classificadores é que, na prática, eles são altamente dependentes dos especialistas no domínio, ou seja, profissionais que detectam os padrões das transações fraudulentas, os transformam em regras e implementam essas regras nos sistemas de classificação. Ao reconhecer esse cenário, o objetivo desse trabalho é propor a uma arquitetura baseada em regras de associação e regressão logística - técnicas estudadas em Aprendizagem de Máquina - para minerar regras nos dados e produzir, como resultado, conjuntos de regras de detecção de transações fraudulentas e disponibilizá-los para os especialistas no domínio. Com isso, esses profissionais terão o auxílio dos computadores para descobrir e gerar as regras que embasam o classificador, diminuindo, então, a chance de haver padrões fraudulentos ainda não reconhecidos e tornando as atividades de gerar e manter as regras mais eficientes. Com a finalidade de testar a proposta, a parte experimental do trabalho contou com cerca de 7,7 milhões de transações reais de cartões fornecidas por uma empresa participante do mercado de cartões. A partir daí, dado que o classificador pode cometer erros (falso-positivo e falso-negativo), a técnica de análise sensível ao custo foi aplicada para que a maior parte desses erros tenha um menor custo. Além disso, após um longo trabalho de análise do banco de dados, 141 características foram combinadas para, com o uso do algoritmo FP-Growth, gerar 38.003 regras que, após um processo de filtragem e seleção, foram agrupadas em cinco conjuntos de regras, sendo que o maior deles tem 1.285 regras. Cada um desses cinco conjuntos foi submetido a uma modelagem de regressão logística para que suas regras fossem validadas e ponderadas por critérios estatísticos. Ao final do processo, as métricas de ajuste estatístico dos modelos revelaram conjuntos bem ajustados e os indicadores de desempenho dos classificadores também indicaram, num geral, poderes de classificação muito bons (AROC entre 0,788 e 0,820). Como conclusão, a aplicação combinada das técnicas estatísticas - análise sensível ao custo, regras de associação e regressão logística - se mostrou conceitual e teoricamente coesa e coerente. Por fim, o experimento e seus resultados demonstraram a viabilidade técnica e prática da proposta. / Credit and debit cards are two methods of payments highly utilized. This awakens the interest of fraudsters. Businesses see fraudulent transactions as operating costs, which are passed on to consumers. Thus, the high number of transactions and the necessity to combat fraud stimulate the use of machine learning algorithms; among them, rule-based classifiers. However, a weakness of these classifiers is that, in practice, they are highly dependent on professionals who detect patterns of fraudulent transactions, transform them into rules and implement these rules in the classifier. Knowing this scenario, the aim of this thesis is to propose an architecture based on association rules and logistic regression - techniques studied in Machine Learning - for mining rules on data and produce rule sets to detect fraudulent transactions and make them available to experts. As a result, these professionals will have the aid of computers to discover the rules that support the classifier, decreasing the chance of having non-discovered fraudulent patterns and increasing the efficiency of generate and maintain these rules. In order to test the proposal, the experimental part of the thesis has used almost 7.7 million transactions provided by a real company. Moreover, after a long process of analysis of the database, 141 characteristics were combined using the algorithm FP-Growth, generating 38,003 rules. After a process of filtering and selection, they were grouped into five sets of rules which the biggest one has 1,285 rules. Each of the five sets was subjected to logistic regression, so their rules have been validated and weighted by statistical criteria. At the end of the process, the goodness of fit tests were satisfied and the performance indicators have shown very good classification powers (AUC between 0.788 and 0.820). In conclusion, the combined application of statistical techniques - cost sensitive learning, association rules and logistic regression - proved being conceptually and theoretically cohesive and coherent. Finally, the experiment and its results have demonstrated the technical and practical feasibilities of the proposal.
|
3 |
Product allocation for an automated order picking system in an e-commerce warehouse : A data mining approachDahl, Alexander January 2020 (has links)
Warehouse automation is a measure E-commerce companies can take to get a more streamlined flow through their warehouse. Order picking is the most labor intensive task in a warehouse. By automating the order picking process companies can lower their costs and improve their response times. This thesis studies the A-frame, an automated order picking system, at a large online pharmacy, Apotea AB. An A-frame has dispensing channels on its side and a conveyor belt that runs through the entire machine. Products for an order are ejected from the channels onto the conveyor belt and at the end of the machine they are dropped into a box. The box is then sealed, labeled and sent to the customer. For the automatic flow to function correctly, all orders picked by the A-frame need to be complete orders. Complete orders are orders where there are no products missing. To maximize the throughput of the A-frame, an appropriate product allocation will be required. Due to the vast number of combinations, it is extremely difficult to identify an optimal product allocation. This study has examined three different approaches to the product allocation problem for an A-frame. The first two methods are based on ranking the products depending on their quantities sold. The last method uses association rule learning, which is a machine learning technique for finding interesting patterns in a data set. Association rule learning was used to find which products were associated to each other. These associations were then placed in a graph structure and solved using a heuristic. To evaluate the different allocation methods, a simulation model was created. The A-frame was simulated using a discrete event simulation, which meant all methods could be tested on the same data to correctly compare the performance of each allocation. The study showed that the heuristic using association rules gave the highest number of picks for the tested period. However, it was only marginally better than the method that first removed orders that could not be picked from the A-frame and then ranked all products by their quantities sold. The study's conclusion is that while association rule learning resulted in the highest number of picked orders, the gain of using it does not motivate its complexity. Instead a more simple approach by ranking products by their quantities sold should be used. Warehousing in the era of E-commerce has to be fast, correct and cheap.
|
4 |
Analýza dat síťové komunikace mobilních zařízení / Analysis of Mobile Devices Network Communication DataAbraham, Lukáš January 2020 (has links)
At the beginning, the work describes DNS and SSL/TLS protocols, it mainly deals with communication between devices using these protocols. Then we'll talk about data preprocessing and data cleaning. Furthermore, the thesis deals with basic data mining techniques such as data classification, association rules, information retrieval, regression analysis and cluster analysis. The next chapter we can read something about how to identify mobile devices on the network. We will evaluate data sets that contain collected data from communication between the above mentioned protocols, which will be used in the practical part. After that, we finally get to the design of a system for analyzing network communication data. We will describe the libraries, which we used and the entire system implementation. We will perform a large number of experiments, which we will finally evaluate.
|
Page generated in 0.1204 seconds